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Preface 
   This course is an introduction to   Statistical Methods for Data Collection, 
Analysis and Validation with hands on training & case study and it aims to 
provide you  to carry out statistical analysis of simple data sets  and an 
exposure to use commonly available computer software packages.  The 
development of such packages has made it much easier for everyone to 
apply statistics to their observations of the world.    

The theory presented in the lectures will  be supported by a series of 
tutorials/computer practical and case studies. These will  put into practice 
what you have learned in the lectures.  You shall be given a set of exercises 
each day which will  be completed outside of the practical hour when 
necessary.  Most of the exercises will  be based on calculations that can be 
done without the aid of a computer; the answers to these problems will  be 
discussed in the tutorial sessions.   

After attending this course, we hope that the participants will be able to: 

• do some basic statistical analysis of data.

• have the confidence to apply the techniques studied and perhaps

slightly more advanced techniques.

January 19, 2021 S K Neogy
Professor & Course Coordinator  
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CHAPTER – 1 
 

INTRODUCTION  TO  ENVIRONMENTAL STATISTICS  
 
        Environmental statistics is a branch of statistics, which has developed 
rapidly over the past 10-15 years, in response to an increasing concern 
among individuals, organizations and governments for protecting the 
environment.  It differs from other applications topics (e.g. industrial 
statistics, medical statistics) in the very wide range of emphases, models and 
methods needed to encompass such broad fields as conservation, pollution, 
evaluation and control, monitoring of ecosystems, management of resources, 
climate change, the greenhouse effect, forests, fisheries, agriculture and 
food.  It is also placing demands on the statisticians to develop new 
approaches or new methods (e.g. for sampling when observations are 
expensive or elusive or when we have specific information to take into 
account) as well as to adapt the whole range of existing statistical 
methodology to the challenges of the new environmental fields of 
application.   
 

Environmental  statistics is indeed becoming a major, high-profile, identified 
theme in most of the countries where statistical analysis and research are 
constantly advancing our understanding of the world we live in. Its growing 
prominence is evident in a wide range of relevant emphases throughout the 
world. 
 

Other expressions of concern for environmental statistics are found in the 
growing involvement of national statistical societies, such as the Royal 
Statistical Society in the UK and the American Statistical Association, in 
featuring the subject in their journals and in their organizational structure.   
Other nations also express commitment to the quantitative study of the 
environmental change networks and with governmental  controls and 
standards on environmental emissions and effects.  Many universities 
throughout the world are identifying environmental statistics within their 
portfolios of applications in statistical research, education and training. 
 

Of course, concern for quantitative study of environmental issues is not a 
new thrust.  This is evidenced by the many individuals and organizations 
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that have for a long time been involved in all (including the statistical) 
aspects of  monitoring, investigating and proposing policy in this area.  
These include health and safety organizations; standards bodies; research 
institutes; water and river authorities, meteorological organizations; fisheries 
protection agencies; risk, pollution, regulation and control concerns, and so 
on. 
 

Such bodies are demanding more and more provision of sound statistical 
data, knowledge and methods at all levels (from basic data collection and 
sampling to specific methodological and analytic procedures).  The 
statistician is of course ideally placed to represent the issues of uncertainty 
and variation inevitably found in all environmental problems.  An interesting 
case in point  was in relation to the representation of uncertainty and 
variation in the setting of environmental pollution standards.  
 

Environmental statistics is thus taking its place besides other directed 
specialties; medical  statistics, econometrics, industrial statistics, 
psychometrics, etc.  It is identifying clear fields of application, such as 
pollution, utilities, quality of life, radiation hazard, climate change, resource 
management, and standards.  All areas of statistical modeling and 
methodology arise in environmental studies, but particular challenges exist 
in certain areas such as official statistics, spatial and temporal modeling and 
sampling.  Environmentally concerned statisticians must be pleased to note 
the growing public and political acceptance of their role in the 
environmental debate. 
 

Many areas of statistical methodology and modeling find application in 
environmental problems.  Particular modern sampling methods have special 
relevance and potential in many fields of environmental study ; they are 
important in monitoring and in standard setting.  For example, ranked-set 
sampling aims for high efficiency inference, where observational data are 
expensive, by exploiting associated (concomitant, often ‘expert-opinion’) 
information to spread sample coverage.  Composite sampling seeks to 
identify rare conditions and from related inferences again where sampling is 
costly and where sensitivity issues arise, whilst adaptive sampling for 
elusive outcomes and rare events modifies the sampling scheme 
progressively as the sample is collected. 
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Other topics such as size-biasing, transect sampling and capture-recapture 
also find wide application in environmental studies. 
 

Time-series methods have been widely applied and developed for 
environmental problems but more research is needed on non-stationary and 
multivariate structures, on outliers and on non-parametric approaches.  We 
will start our study of environmental statistics by considering briefly some 
practical examples, from different fields.   In this  five days programme we 
will be examining how statistical principles and methods can be used to 
study environmental problems.  Our concern will be directed to : 
 

• Data collection, monitoring and representation; 

• Drawing inferences about important characteristics of the problem; 

• Using statistical methods to analyze data and to aid policy and action. 

• Probabilistic  and statistical models; 

 

 

The principles and methods will be applicable to the complete range of 
environmental issues (including pollution, conservation, management and 
control, standards, sampling and monitoring) across all fields of interest and 
concern (including air and water quality, forestry, radiation, climate, food, 
noise, soil condition, fisheries, and environmental standards).   
 

Any models or methods applicable to situations involving uncertainty and 
variability will be relevant in one guise or another to the study and 
interpretation of environmental problems and will thus be part of the 
armoury of environmental statistics or environmetrics.  Environmental 
statistics is a vast subject.  In an article in the journal Environmetrics, Hunter 
(1994) remarked: Measuring the environment is an awesome challenge, 
there are so many things to measure, and at so many times and places.  But, 
however awesome, it must be faced!  The recently published four-volume 
Encyclopedia of Environmetrics (El-Shaarawi and Piegorsch, 2002) bears 
witness to the vast coverage of our theme and to its widespread following. 
 



 4

As we enter the new millennium the world is in crisis – in so many respects 
we are placing our environment at risk and not reacting urgently enough to 
reverse the effects.   
 

• The average European deposits in a lifetime a monument of waste 
amounting to about 1000 times body weight, the average North 
American achieves four times this. 

 

• Sea-floor sediment deposits around the UK average 2000 items of 
plastic debris per square metre. 

 

• Over their lifetime, each person in the Western world is responsible 
for carbon dioxide emissions with carbon content on average 3500 
times the person’s body weight. 

 

The problem of acid rain, accumulation of greenhouse gases, climate 
change, deforestation, disposal of nuclear waste products, nitrate leaching, 
particulate emissions from diesel, fuel, polluted streams and rivers, etc., have 
long been crying out for attention.  Ecological concerns and commercial 
imperatives sometimes clash when we try to deal with the serious 
environmental issues.  Different countries show different degrees of resolve 
to bring matters under control; carbon emission is a case in point, with 
acclaimed wide differences of attitude and practical between, for example, 
the United States and the European Union.  Environmental scientists, and 
specialists from a wide range of disciplines, are immersed in efforts to try to 
understand and resolve the many environmental problems we face. 
 

Playing a major role in these matters are the statisticians, who are uniquely 
placed to represent the issues of uncertainty and variation inevitably found in 
all environmental issues.  This is vital to the formulation of models and to 
the development of specific statistical methods for understanding and 
handling such problems. 
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CHAPTER – 2 
 

ENVIRONMENTAL DATA QUALITY MANAGEMENT  
 
INTRODUCTION 
 
This chapter  discusses evolution of the environmental data quality model by 
evaluating the relationship between data quality and decision quality, and by 
distinguishing analytical quality from data quality. A ‘‘next-
generation’’ data quality model can create the framework needed for 
explicitly managing both data and decision uncertainties using new 
strategies to produce greater decision confidence (‘‘better’’), while 
simultaneously shortening project lifetimes (‘‘faster’’) and cutting 
overall project costs (‘‘cheaper’’) more than ever before possible . 
 
‘‘QUALITY’’ AS A POLICY GOAL” 
 
Exhortations for ‘‘sound science’’ and ‘‘better quality data’’ 
within the context of regulatory environmental decision making are 
increasingly popular. Is the current data quality model sufficient to achieve 
sound science?  Is ‘‘data quality’’ really the key issue, or is there 
something more fundamental at stake?   
 
‘‘Data quality’’ is too often viewed as some independent standard  
established by outside arbiters independent of how the data will actually be 
used. Project managers tend to follow a checklist of ‘‘approved’’ 
analytical methods as the primary means of achieving ‘‘data quality.’’ 
Yet, striving for ‘‘high quality data’’ under the current model has 
proven to be an expensive and sometimes counterproductive exercise. 
 

 
In contrast to checklist approaches to ‘‘data quality,’’ sound science 
in regulatory and project decision-making is achieved by acknowledging and 
managing decision uncertainty. Correspondingly, acceptable data quality is 
achieved by managing all aspects of data uncertainty to the degree needed to 
support the decisions for which the data are intended. Managing uncertainty, 
either of decisions or of data, requires careful planning using relevant 
expertise and technical skills. Calls for ‘‘sound science’’ and 
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‘‘better data quality’’ are meaningless without a simultaneous 
commitment to include scientifically qualified staff when planning science-
based programs and projects. Environmental programs exist because there is 
work that must be done at the project level. Policy-makers that desire to see 
sound science in environmental decisions need to provide a coherent vision 
that will steer the 
development of program infrastructure that focuses on managing decision 
quality at the project level. 
 
It is a mistake to assume that scientific data are (or can be) the only basis for 
regulatory decision-making. Science may be able to provide information 
about the nature and likelihood of consequences stemming from an action, 
but the decision to pursue or reject that action (i.e., accept or reject the risk 
of consequences) based on scientific information is within the province of 
values, not science. Even the choice of how much uncertainty is tolerable in 
statistical hypothesis testing lies in the realm of values. Thus, it is 
appropriate that many nonscientific considerations feed into a regulatory 
decision-making process. This does not invalidate a foundation of 
‘‘sound science’’ as long as the various roles of science and values 
are differentiated, and any underlying assumptions and other uncertainties in 
both data and decision making are openly declared with an understanding of 
how decision making could be affected if the assumptions were erroneous. 
 
 
DECISION QUALITY AS DEFENSIBILITY 
 

The term ‘‘decision quality’’ implies that decisions are defensible (in 
the 
broadest scientific and legal sense). Ideally, decision quality would be 
equivalent to the correctness of a decision, but in the environmental field, 
decision correctness is often unknown (and perhaps unknowable) at the time 
of decision-making. When knowledge is limited, decision quality hinges on 
whether the decision can be defended against reasonable challenge in 
whatever venue it is contested, be it scientific, legal, or otherwise. Scientific 
defensibility requires that conclusions drawn from scientific data do not 
extrapolate beyond the available evidence. If scientific evidence is 
insufficient or conflicting and cannot be resolved in the allotted time frame, 
decision defensibility will have to rest on other considerations, such as 
economic concerns or political sensitivities. No matter what considerations 
are actually used to arrive at a decision, decision quality (i.e., defensibility) 
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implies there is honest and open acknowledgment and accountability for the 
full range of decision inputs and associated uncertainties impacting the 
decision making process. 
 
 
FIRST-GENERATION STEPPING-STONES THAT BECAME STUMBL ING 
BLOCKS 
 
When immediate action is desired, but knowledge and expertise are not yet 
sufficient to plot the smartest plan of attack, a reasonable tactic is to initially 
create a consistent, process-driven strategy based on the best available 
information so everyone can ‘‘sing from the same sheet of music’’ 
while experience and knowledge are being accumulated. Certainly this made 
sense for the emerging cleanup programs. To be consistent with sound 
science, however, such a process-driven approach should be openly 
acknowledged by all participants as the first approximation that it is, with 
the understanding that one-size-fits-all oversimplifications will be discarded 
in favor of more scientifically sound information as it becomes available. 
Although science may be comfortable viewing first approximations as short-
lived stepping-stones subject to continual improvement and revision, this 
view is less welcome when economic and litigious forces intersect with 
broader societal goals in a regulatory crucible. This is one of the 
fundamental conflicts faced 
by policy makers seeking ‘‘sound science’’ as a basis for regulation. 
 
 
EVOLVING A SECOND-GENERATION DATA QUALITY MODEL 
 
To set the stage for an updated data quality model, we must clarify the term 
‘‘data quality.’’ Data quality is ‘‘the totality of features and 
characteristics of 
data that bear on its ability to meet the stated or implied needs and 
expectations of the user/customer’’    What data users ‘‘need,’’ 
ultimately, is to make the correct decisions. Therefore, data quality cannot 
be viewed according to some arbitrary standard, but must be judged 
according to its ability to supply information that is representative of the 
particular decision that the data user intends to make. Said in a different 
way, anything that compromises data representativeness compromises data 
quality, and data quality should not be assessed except in relation to the 
intended decision. The assumptions of the current data generation model and 
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routine application of this model to environmental decision-making for site 
cleanup 
are inadequate to ensure that data are representative of the site decisions 
being made. The root cause of data non-representativeness is the fact that 
environmental data are generated from environmental samples (i.e., 
specimens) taken from highly variable and complex parent matrices (such as 
soils, waste piles, sludges, sediments, groundwater, surface water, waste 
waters, soil gas, fugitive airborne emissions, etc.). This fact has several 
repercussions: 
 

1. The concept of representativeness demands that the scale (spatial,  
temporal, chemical speciation, bioavailability, etc.) of the supporting 
data be the same (within tolerable uncertainty bounds) as the scale 
needed to make the intended decisions (does unacceptable risk exist 
or not; how much contamination to remove or treat; what treatment 
system to select; what environmental matrix to monitor; what analytes 
to monitor for; where and how to sample; etc.).   

2. The concept of representativeness can be coarsely broken into sample 
representativeness and analytical representativeness, both of which 
are critical to managing data uncertainties:  

 
• Sample representativeness includes procedures related to specimen 

selection, collection (i.e., extraction from the parent matrix), 
preservation, and subsampling (although this is often included with 
‘‘analytical’’ since it typically takes place in the lab). All are 
crucial to data quality, but the representativeness of specimens is 
difficult to ensure without sufficient sampling density to understand 
the scale and characteristics of matrix heterogeneities. Even perfectly 
accurate analysis is no guarantee of good data quality if the sample 
were not representative of the properties of concern to the decision-
maker. Since many environmental matrices are highly heterogeneous 
on many different scales that affect contaminant concentration and 
behavior in analytical and biotic systems, most of the uncertainty in 
most of today’s site data stems from the sampling side, although 
inaccurate analysis certainly can (and do) occur.  

• Analytical representativeness involves selecting an analytical method 
that produces test results that are representative of the decision. 
Causes of analytical non-representativeness include selecting the 
wrong method or erroneously interpreting method results Analytical 
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representativeness is compromised when matrix interferences degrade 
method performance to the point where erroneous decisions would be 
made if the data were not recognized as suspect. If interferences are 
found, sound science demands that method modification or an 
alternate method be used to compensate.  

 
In contrast to the assumptions that underlie the current data quality model, a 
second-generation data quality model for the environmental field will 
explicitly recognize that: 
 

• Data quality is an emergent property arising from the interaction 
between the attributes of the analytical data (such as its bias, 
precision, detection and quantitation limits, and other characteristics 
that together contribute to data uncertainty) and the intended use of 
the data (which is to assist managing decision uncertainty). 

• Data uncertainty is comprised of both sampling and analytical  
uncertainties.  

• Analytical uncertainty in a test result arises from both the analytical 
uncertainty of the measurement method itself and from interaction 
between the sample matrix and the analytical process. The analytical 
uncertainty arising from the method itself is only a fraction (and often 
a negligibly small fraction) of the overall data uncertainty. 

• Sampling uncertainty accounts for the majority (and in some  
situations, nearly all) of the data uncertainty. This uncertainty can be 
managed by increasing the sampling density and/or by targeting 
sample collection designs to yield the most valuable information (i.e., 
gather more data where decisions are more uncertain, such as 
boundaries between ‘‘clean’’ and ‘‘dirty’’ areas, and less 
data where there decisions are more certain, such as obviously 
‘‘clean’’ or obviously ‘‘dirty’’ areas). Sample 
representativeness requires that all aspects of sampling design be 
matched to the scale of decision-making.  

• Procedures to estimate and report data uncertainties (e.g., uncertainty 
intervals) to the data user need to be developed for the environmental  
field.  

•  Investment in properly educated and experienced technical staff is a 
necessary and cost-effective means to achieve data quality and good 
science where numerous complex and interacting variables must be 
evaluated and balanced.  
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CHAPTER – 3 
 

DATA COLLECTION, SUMMARISATION AND       
PRESENTATION OF ENVIRONMENTAL DATA 

 
Introduction 
 
Many  time, we are tempted to exercise control or take decisions on the basis 
of our experience, impression or intuition.  If  we  are lucky we might be 
rewarded with expected results - otherwise we fail.  The risk involved in 
such exercises can be controlled/minimized only through systematic 
collection of data and their analysis where data is a numerical expression of 
the characteristics of an activity or process. The environmental data 
components  are  presented in the following diagram. 
 

 
 

 
Type of Environmental Data: 
 
Data are of two categories : (i) routine ; (ii) special 
 
Routine data are collected for  monitoring of air quality, monitoring the 
benzene level,  evaluating the water quality status of Yamuna river,  
assessing hazardous wastes etc.  Special data might be collected for 
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investigating chronic problems or for studies involving experimentation for 
improvement purpose.  Whatever be the type of data, we must follow some 
cardinal principles while collecting data. 
 
  
Attribute and Variable Data  
 
There are two types of data – the Attribute type and the Variable type.  In the 
attribute type the   characteristic considered is not measurable.  It only gives 
a comparative view of the  characteristic of interest.  For example good, bad 
or worse,  whereas  the variable type of  characteristic is measurable.  For 
example if  temperature, the characteristic then the importance of the 
characteristic is given by a numerical value say 500C at one time point and 
say 520C at another time point. 
 
 
 
1. Have a clearly defined objective  
 
Remember that data are meant for ACTION.  Before collecting data, it is 
important to determine which  charateristic is to be considered. Next, what 
we are going to do with the data.  Both short term and long term objectives 
are to be kept in mind.  It is no use collecting data which are not utilized at 
all.  Collecting of data costs money.  A balance has to be struck between the 
cost and the worth of the information for action. 
 
2. Collecting data to suit the purpose  
 
Once the objective for collecting data is defined, the types of comparison 
which need to be made are also determined, and this in turn identifies the 
type of data, time interval which should be collected.  Suppose we are 
interested in assessing the variability in certain  characteristic. If only one 
observation is collected per day, it is impossible to determine the variability 
which occurs in a day.   
 
3. Ensure reliability of measurements  
 
Data are input for decisions  made by an organization.  In view of the impact 
it makes, it is absolutely essential that the reliability of data is ensured.  
Unreliability of data might result from deliberate attempts to conceal true 
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facts or ignorance.  In one chemical process industry, the inprocess wastage 
figures were being under-reported only to show the management that targets 
are being met.  In another case for acceptance sampling purposes, an 
inspector was reporting the average of measurements based on varying 
sample size at his discretion and using such results for determining  
acceptability of the product supplied by a vendor.  This was a violation of 
the stipulated procedure to follow the sampling plan. 
 
4. Decide the subsequent treatment of data  
 
Once some data are collected, it is necessary to decide in advance how to 
present or summarize the data and what kind of statistical analysis to 
perform so that meaningful inferences can be drawn for action.  The 
responsibility at all the stages of data collection, presentation, analysis, 
reporting and action is also to be simultaneously fixed.  The paper work 
system needs proper planning to make it effective.  
 
 
5. Find right ways to record data  
 
While collecting data it is necessary to arrange the data neatly so that 
subsequent processing is facilitated.  Relevant details such as day of the 
week, hour of the day, inspector, measuring instrument used etc. needed to 
be recorded properly.  The frequency of data can be decided keeping in view 
the  purpose, cost of data collection, data-processing facility and the 
availability of relevant resources.  It is important for the data to be capable 
of being collected in a simple way and in a form which is easy to use.  
Appropriate data-sheet or proforma or check-sheet has to be designed.  So 
that data recording becomes easy and the data are arranged automatically so 
that they can be easily taken on for further processing. 
 
 
Tools and Techniques for  looking at data : 
 
The following techniques are commonly used for preliminary analysis.  
 

1. Check Sheet 
2. Pareto Analysis 
3. Brain storming  
4. Ishikawa Diagram or Cause and Effect Diagram 
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5. Scatter Diagram and Regression Analysis 
6. Stratification 
7. Histogram 

 
Some of these techniques have been discussed in this chapter and some 
others have  been discussed in the following chapters. 
 
 
Check Sheet  
 
To collect data check sheets are used.  This facilitates easy collection, 
summarization and analysis of data.  It can be used in the following 
functions:  (a) vital items check (c) problem location checks (d) problem  
cause checks  
 
 
Pareto Analysis 
 
Whenever any problem related to pollution or cost is taken up to investigate 
the ways of improvement, the first task usually is to narrow down the 
problem area so that the problem becomes easier to handle and the root 
causes of the maladies are identified quickly.  Fortunately there is a natural 
law which almost always ensures that a relatively few of the contributors 
account for the bulk of the problem.    This is segregation of ``vital few and 
trivial many" contributors is known as PARETO ANALYSIS, a term coined 
by Dr. J.M. Juran. 
 
Procedure for making Pareto Chart  
 
Step 1   Decide what items are to be investigated and how to collect data. 
 

(i) Decide what kind of data you want to investigate. For example, 
the problem of hazardous waste in Noida or Ghaziabad area, 
amount of loss in monetary terms, number of customer 
complaints etc. 

(ii) Decide how to classify the data.  For example, by the type of 
defect, location, process, machine, worker, method etc.; if the 
necessary record items appearing infrequently under the heading 
``others". 
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(iii) Determine the method of collecting the data and the period for 
which it is to be collected. 

 
Step 2   Design a data tally sheet listing the items with space to record their 
totals. 
 
Step 3    Fill in the tally sheet and calculate the totals. 
 
Step 4    Make a Pareto chart data sheet listing the items, their individual 
totals, cumulative totals, percentages of overall total, and cumulative 
percentage. 
 
Step 5     Arrange the items in order of quantity and fill in the data sheet.  
The item ``others" should be placed in the last row, no matter how large it is 
because it is composed of a group of items each of which is smaller then the 
smallest item listed individually.  
 
Step 6       Draw two vertical axes and a horizontal axis.  Mark the left hand 
vertical axis with a scale from 0% to 100%.  The horizontal axis is to be 
divided into a number of equal intervals, equal to the number of items 
investigated. 
 
Step 7     Construct a bar chart with bars over the intervals corresponding to 
each item.  The height of each bar is proportional to the corresponding 
frequency. 
 
Step 8     Draw the cumulative curve (Pareto Curve) by marking the 
cumulative percentage points above the right hand intervals of each item, 
and connecting the points by a solid line. 
 
Step 9       Write other relevant information on the chart so that it becomes 
self-explanatory. 
 
Pareto Analysis of  the number of persons affected due to  different types of 
hazardous waste  in a  city is shown next. 
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Exercise:   Make Pareto Analysis of  types of hazardous waste  in  a city.  

Table  : Data Tally Sheet 
 
 
Sl.No. Type  of 

hazardous 
waste   

Tally Frequency 
(no. of person 
in thousands) 

1 

2 

3 

4 

 

5 

6 

7 

A 

B 

C 

D 

 

E 

F 

Others 

||||  |||| 

||||  ||||  ||||  ||||  ||||  ||||  ||||  ||||  || 

||||  | 

||||  ||||  ||||  ||||  ||||  ||||  ||||  ||||  ||||  ||||  |||| 

||||  ||||  ||||  ||||  ||||  ||||  ||||  ||||  ||||  |||| 

|||| 

||||  ||||  ||||  ||||   

||||  ||||  ||||   

10 

42 

 

 

104 

4 

20 

14 

  TOTAL 200 
 

Table : Data Sheet for Pareto Chart 
 
Sl. 
No. 

Type of 
hazardous 

waste   

Frequency Cumulative 
Frequency 

% Contribution 
by Type of 

waste 

Cumulative 
Percentage 

1 D 104 104 52 52 
2 B 42 146 21 73 
3 F 20 166 10 83 
4 A 10 176 5 88 
5 C 6 182 3 91 
6 E 4 185 2 93 
7 Others 14 200 7 100 
 Total 200  100  
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The chart brings out very clearly that if the hazardous waste  is to be brought 
down, we should first concentrate on  type of waste D which contributes 
more than 50\% to the total.  Such information is obviously very useful in 
directing the priorities of the study. 
 
The information obtained through Pareto analysis when presented in the 
form of a chart is known as PARETO CHART.  Dr. Juran was the first to 
use the concept introduced by the Italian economist V. Pareto who showed 
that the largest share of income or wealth is held by a much smaller number 
of people. 
 
 
 
 Frequency 100 
 
 90 
 
 80 
  
 70 
 

120 60 
 

 100 50 
  
 80 40 
 
 60 30 
  
 40 20 
  
 20 10 
  
 0 0 
Type D       B        F        A        C       E     Others 
 
 
 

Pareto Chart by Effect 
 

Cumulative  
Frequency (%) 
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This is a chart concerning poor performance and is used to find out what 
the major problem is.  This performance may be related to :  
 

i. Quality :  faults, failures, complaints, returned items, repairs, recovery 
etc.  

ii. Cost : amount of loss, expenses  
iii. Delivery : Stock, Shortage, defaults in payments, delays in delivery.   
iv. Safety : Accidents, Mistakes, Breakdowns 
Brain Storming And Ishikawa Diagram 
 
Any problem we take up for study normally involves a large number of 
factors originating from different departments of the organization.  One or a 
few persons may not have complete knowledge about all the possible causes 
or factors which contribute to the problem.  As such it is necessary to 
conduct a group exercise wherein all concerned and knowledgeable people 
must sit together and discuss.  Such an exercise is known as brain storming.  
This will help us to prepare a complete list of the factors involved in any 
experiment. 
 
The list of factors can be presented in tabular form.  However, a most 
comprehensive way of presentation is a pictorial or diagrammatic form 
known as the Ishikawa Diagram. 
 
 
Cause & Effect Diagram (Ishikawa Diagram) 
 
In order to achieve the goal of ``making right the first time''.  It is necessary 
that we understand the root cause which create the problems.   The cause of  
poor air quality  or water quality may be attributed to a number  of factors 
depending upon the complexity of the problem, and a cause-and-effect 
relationship can be found among those factors.  Approached individually, 
different people might offer different explanations as to the root causes.  But 
jointly we can determine structure of a multiple cause and effect relation by 
observing it systematically.  It is difficult to solve complicated problems 
without considering this structure which consists of a chain of causes and 
effects, and a CAUSE & EFFECT DIAGRAM is a method of expressing it 
simply and easily. 
 
In 1953 Prof. K. Ishikawa of Tokyo University summarized the opinions of 
engineers at a plant in the form of a {Cause & Effect Diagram} as they 
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discussed a quality problem.  This was the first time, this approach was used.  
Since then it proved to be quite useful in visual display of the relation 
between the  characteristics to be investigated  and the factors so that 
systematically the theories could be tested and remedies developed.  
 
The diagram is a fish-bone like structure where the quality characteristic 
having problem is indicated by the horizontal main arrow (backbone) and 
the major factors such as Materials, Methods, Man, and Machines etc. which 
contribute primarily to the causes of the problems are represented in the 
form of slanting arrows meeting the main arrow from the top or bottom.  The 
secondary causes of each primary causes are indicated through horizontal 
small arrows meeting the  arrows for primary causes. The causes are listed 
through brain-storming sessions attended by all concerned.  
Procedure for making and using cause & effect diagram 
 
� Decide on the quality characteristic having problem. 
� Find as many causes as possible which are considered to affect the 

quality characteristic. 
� Sort out the relations among the causes and make a cause & effect 

diagram consisting of arrows which represent the primary and 
secondary causes. 

� Determine priorities of the causes for verification with data already 
available or to be collected specially. 

� Assign importance or significance to each factor objectively on the 
basis of data and device appropriate measures to get rid of the 
problems. 

 
Checkpoints for preparing cause effect diagram  
 
� State the objective very clearly.  Is it ``increasing or decreasing 

average level of some variable  characteristic or decreasing the 
variability or decreasing the occurrence of some undesirable events." 

� Secure participation from all concerned.  The participants should 
express their viewpoints honestly and fearlessly.  Even very odd ideas 
might click subsequent for solving a problem. 

� Express the factors as concretely as possible.  Factors expressed in an 
abstract manner only result in a cause & effect diagram based on 
generalities which will not help in solving the problem. 

� Choose measurable characteristics and factors so that they are 
amenable to statistical verification with data. 
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� Discover factors amenable to action.  If the cause you have identified 
can not be acted upon the problem will not be solved.  If 
improvements are to be affected, the cause should be broken down to 
the level at which they can be acted upon, otherwise identifying them 
will become a meaningless exercise. 

 
  See Figure for cause and effect diagram. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The measurement method must produce accurate and precise results over 
time 

 
 Not Precise Precise 
 
 

Not Accurate 
 

 

 
 
 
  

 

 
 

Accurate 
 

 

  

 
 
 

People Equipmen
t 

Environment 

Materials Methods Measurement 
& Testing 

Process 
Variation  
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Stratification  
 
This is the sample selection method used when the whole population, or lot, 
is made up of a complex set of different characteristics, e.g. region, income, 
age, race, sex, education, operators, shift, days etc. In these cases the sample 
must be very carefully drawing in proportions which represent the makeup 
of the population. 
 
Stratification involves simply collecting or dividing the set of data into 
meaningful groups or strata and depicting the data in stratified form so as to 
bring out if the different groups are significantly different.  Groups which 
are worse than the others are singled out and appropriate actions are taken to 
bring them at par with the others thereby effecting significant improvement 
in the overall performance.  
 
Scatter Diagram  
 
Scatter diagram are used to examine the relationship between two factors to 
see if they are related.  If they are, then by controlling the independent 
factor, the dependent factor will also be controlled.  For example, if the 
temperature of the process and the purity of a chemical product are related 
then by controlling temperature, the purity of the product is determined. 
Figure illustrates use of Scatter Diagram in different situations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Process Temperature 
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   B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  : Scatter Diagram 
 

Motivation:  
A quantitative approach to environmental problem solving can be broken   
down into a number of steps. We assume that you start with a qualitative 
problem much like the acid rain question in the first chapter. 
1. Formulate quantitative hypotheses and questions that will help you 
address your general question or issue. 
2. Determine the variables to observe. 
3. Collect and record the data observations. 
4. Study graphics and summaries of the collected data to discover and   
remove mistakes and to reveal  relationships between variables. 
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5. Choose a model describing the important relationships seen or     
hypothesized in the data. 
6. Fit the model using the appropriate modeling technique. 
7. Examine the fit using model summaries and diagnostic plots. 
8. Repeat steps 5-7 until you are satisfied with the model.    
9. Interpret the model results in light of your general question. 
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CHAPTER - 4 
 

DESCRIPTIVE STATISTICS FOR  
ENVIRONMENTAL DATA 

 
What is Statistics? 
 
The word ‘statistics’ is used in two senses – data and the science.  The 
science of statistics deals with: 
 

1. Collection of data 
2. Summarisation of data 
3. Analysis of data, and 
4. Drawing valid  inference  from data which are usually subject to 

variation. 
 
A layman usually considers statistics in the sense of ‘ Data ‘ only.  As was 
the case with many other sciences, Statistics has also been much abused 
knowing or unknowingly, by people involved in public dealings.  All these 
ultimately led to the comment ‘There are lies, damned lies, and statistics’. 
 
Need for the Science Statistics:  
 
Other than the people engaged in professional statistics activities, it is 
scientists, engineers and managers at different levels of manufacturing, 
laboratories, or service organizations, who handle maximum amount of data 
and interpret them for decision making and action.  The efficiency of an 
organization depends upon the quality of decision making to a large extent.  
There are many situations, where common sense is a poor guide when it 
comes to interpretation of data.  The quality of decision making on the basis 
of data can improve only with the help of the science of statistics.  Of 
course, sometimes the basic problems remains, namely, not talking with 
facts but talking on the basis of opinions, impressions etc. which make the 
decision making highly subjective. Typically we are interested in a 
population -  a well defined groups of cases. 
 



 24

Population:  Collection of all elements under consideration and about which 
we are trying to draw  conclusions.  
 
 
Population elements may be : 
 

• Objects; 
 

• Entities; 
 

• Units; 
 

• People; .. etc 
 

• A batch of material  
 
Generally each case has one or more characteristics (attributes) of interest.  
When a particular characteristic is measured we obtain a value which varies 
from case to case – hence each characteristic is termed a variable.  
Recording the value of a variable for each case amounts to collecting data. 
 
Sample: A subset of the elements selected from the population with a view 
to draw inference about the population characteristics.  Thus a sample is part 
of population.  The objective of statistical inference is to draw conclusions 
about the population using a sample data from that population. 
 
 
Data Summarisation Methods:  
 

• Graphical Methods 
• Tabular Summarisation 
• Numerical Indices 

 
Graphical Methods: 
 
 
Graphic displays provide better insight that often is not possible with words 
or numbers.  
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Graphical Tools: 
 

• Bar Chart 
• Pie Chart 
• Run Chart 
• Histogram 
• Frequency Curve 
• Scatter Diagram 
• Control Charts 
• Box Plots 
• Youden Plots 

 
Tabular Methods:  Summarises data in the form of a table. 

 
Table 1 : Concentration of benzene in 100 air samples (units in 3/ mgµ ) 

 
3.37 
 
3.29 
 
3.35 
 
3.32 
 
3.35 
 
3.38 
 
3.29 
 
3.31 
 
3.40 
 
3.35 

3.34 
 
3.36 
 
3.36 
 
3.37 
 
3.33 
 
3.39 
 
3.41 
 
3.33 
 
3.35 
 
3.36 

3.38 
 
3.30 
 
3.30 
 
3.34 
 
3.38 
 
3.34 
 
3.27 
 
3.35 
 
3.37 
 
3.39 

3.32 
 
3.31 
 
3.32 
 
3.38 
 
3.37 
 
3.32 
 
3.36 
 
3.34 
 
3.35 
 
3.31 

3.33 
 
3.33 
 
3.33 
 
3.36 
 
3.44 
 
3.30 
 
3.41 
 
3.35 
 
3.32 
 
3.31 

3.28 
 
3.34 
 
3.35 
 
3.37 
 
3.32 
 
3.39 
 
3.37 
 
3.34 
 
3.36 
 
3.30 

3.34 
 
3.34 
 
3.35 
 
3.36 
 
3.36 
 
3.36 
 
3.36 
 
3.31 
 
3.38 
 
3.35 
 

3.31 
 
3.36 
 
3.34 
 
3.31 
 
3.32 
 
3.40 
 
3.37 
 
3.36 
 
3.35 
 
3.33 

3.33 
 
3.39 
 
3.32 
 
3.33 
 
3.29 
 
3.32 
 
3.33 
 
3.37 
 
3.31 
 
3.35 

3.34 
 
3.34 
 
3.38 
 
3.30 
 
3.35 
 
3.33 
 
3.36 
 
3.35 
 
3.34 
 
3.31 
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Procedure for Constructing a Frequency Distribution : 

1. Decide on the number of cells. 
2. Calculate the approximate cell interval.  The cell interval equals the 

largest observation minus the smallest observation divided by the 
number of cells.  Round this results to some convenient number. 

3. Construct the cell by listing cell boundaries. 
4. Tally each observation into the appropriate cell. 
5. List the total frequency of each cell. 

 
Number of cells in frequency distribution: 
 

Number of 
observations 

Recommended 
number of cells 

20-50 
51-100 
101-200 
201-500 
501-1000 
Over 1000 

6 
7 
8 
9 
10 

11-20 
 
 
Table 2: Frequency Table of  Concentration of benzene in 100 samples : 
 

Diameter Tally Mark Frequency Cumulative 
Frequency 

3.265 – 3.295 
 
3.295 – 3.325 
 
3.325 – 3.355 
 
3.355 – 3.385 
 
3.385 – 3.415 
 
3.415  – 3.445 

//// 
 
//// ////  //// ////  /// 

 
//// ////  //// //// //// ////  / 
 
//// ////  //// ////  ////  //   
 
//// /// 
 
/ 

5 
 

23 
 

36 
 

27 
 
8 
 
1 

5 
 

28 
 

64 
 

91 
 

99 
 

100 
Total  100  
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Histogram : It is bar chart of a frequency distribution.  It highlights the 
center and amount of variation in the sample of data.  The simplicity of 
construction and interpretation of the  histogram makes it an effective tool in 
the elementary analysis of data.  Many problems in quality control have been 
solved with this one elementary tool alone.  Figure  - 1 gives the histogram 
of data given in Table – 1.  The following steps are used to construct 
histogram :  
 
 

1. Mark the Y – axis with frequency scale. 
 
2. Mark the X-  axis with class boundaries using a suitable scale. 
 
3. Draw rectangles on X – axis  with base equal to the width of the class 

interval and height equal to class frequency. 
 

 
          40 
  F       
  r 
  e       30 
  q 
  u       
  e       20 
  n       
  c       
  y 
          10 
 
           5  
   
                    3.265   3.295     3.325      3.355       3.385     3.415       3.445 
 
Histogram illustrates how variable data provides much more information 
than do attribute data.  Centering of histogram, width of the histogram and 
the shape of the histogram reflect the ability of the process to meet 
specification limits and presence of assignable causes of variation in the 
process.  Figure – 2 gives typical histograms  encountered in practice.  
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Frequency Polygon :  
 
It is the line graph of class frequency against midpoint of class interval.   
 
 
Numerical Indices  : Data can be summarized using  
 

- Measures of central tendency 
 
- Measure of dispersion 

 
Measures of Central Tendency: A value which is representative of the set 
of data as most of the data is centered around this value.   Important 
measures of central tendency are Mean, Mode and Median. 
 
Mean :   Total of all the observations divided by the number of 
observations. 
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Example:   

 
Benzene 
Conc. 

( )3/ mgµ  

No of days (f) Xf 

25 2 50 
26 3 78 
27 4 108 
28 3 84 
29 1 29 
30 2 60 

Total 15 409 
 

Average temp.  ( )X  = 266.27
15

409=  

 
 
Mode : That value for which frequency is maximum. 
 
Median : It is the middle most central value when all values are arranged by 
order of magnitude.  Half the values lie above this value and the other half 
lie below it.  That is median divides the data into two equal parts. 
 
Steps to compute the Median:  
 

1. Arrange all  values in order of size.  From smallest to largest. 
 
2. If the number of values (n) is odd, the median is center value in the 

ordered list.  The location of median is obtained by counting 
( )

2

1n+
 

observations from the bottom of the list. 
 

Consider the data set :  490, 400, 450, 420  and 430 to find the median 
of this data, we first arrange the data from smallest to largest value. 
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    e.g. 400, 420, 430, 450, 490. The median is in the position  
 

   
( )

2

1n+
 = 3

2

15 =+
.  Therefore the median is 430. 

 
3. If the number of observations (n) is even, the median M is given by 

the average of the two center observations in the ordered list. i.e for 
example 70, 75, 77, 82, 88, 100, 105, 108, the median is the average 

of the 4th and 5th value i.e, 85
2

8882 =+
 

 
The median has several advantages over the mean. The most important is 
that extreme values do not affect the median as strongly as they do the mean.  
That is the mean is much more sensitive to outlier values as compared to the 
median. 
 
Percentile:   The pth percentile of the data is the value such that p percent of 
the observations fall at or below it.   
 
The median is the 50th percentile the first quartile is 25th percentile and the 
third quartile is the 75th percentile. 
 
 
Dispersion: Variation is a fact of nature and in industrial life too.  No two 
items produced by same process are exactly the same.  Tests done on the 
same samples may vary from chemist to chemist or from laboratory to 
laboratory.  This is true whether the test equipment involved is automatic or 
manually operated.  Variation can be because of lack of complete 
homogeneity of chemicals used in test, variation in test  environmental 
conditions or due to difference in the  skill of chemists or testing equipments 
etc.  Variation in the test results add to the uncertainty of decisions and 
hence it is important to measure variation and control it.  
 
In summarizing data, the variability in the values is often an important 
feature of interest.  Major measures of dispersion are : 
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1. Range (R) :  The range is the difference between the largest and 
smallest value in a data set.  That is Range (R) = Largest Value - 
Smallest Value. 

 
2. Quartile:  Quartiles divide the data into four equal parts.  Each part 

contains 25% of the values.  Q1 is call the first or lower quartile and 
Q3 is called the third quartile or higher quartile.  Q2 is the median. 

 
 
Interquartile Range (IQR): It is the difference between the third and the 
first quartiles of a set of values.  That is Interquartile Range (IQR) = Q3 - Q1 
 
Interquartile range is a simple measure of speed that gives the range covered 
by the middle half of the data.  It reflects the variability of the middle 50 
percent of the data. 
 
The quartiles and the IQR are unaffected by extreme values. 
 
 
 Inter Quartile Range 
 
 
                                         ¼ of values    ¼ of values 
 
 
                 Min.             Q1                 Q2                Q3               Max. 
                 Values               Values 
 
 
 

 
 1st Quartile      2nd Quartile     3rd Quartile 
 
 
Calculation of Quartiles:   
 

1. Arrange the data in the increasing order and locate the median. 
 
2.  The first quartile in the median of the observation below the location 

of the median. 
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3. The third quartile in the median of the observations above the median 

of all observations. 
 
 
Example:  Data  below gives the daily presence of sulphur oxides in a city. 
 

15.8,  26.4, 17.3, 11.2, 23.9, 24.8, 16.2, 12.8, 22.7, 28.8, 7.7, 13.5, 
18.1,, 17.9, 23.5,   

 
Determine the quartiles and inter-quartile range. 
 
 

1. Arrange the data in the increasing order i.e  
 

         7.7, 11.2, 12.8, 13.5, 15.8, 16.2, 17.3,  17.9, 18.1, 22.7, 23.5, 23.9, 24.8, 26.4,  28.8   
 

2. Q2 = Median = Middle value i.e 8th value =  17.9  
     Q1  = 13.5 and Q3 = 23.9. 
 

     3.  Interquartile range (IQR) = Q3 - Q1 = 23.9 - 13.5 = 10.4 
 
Standard deviation and Variance:The Most commonly used measure of 
dispersion is called the standard deviation. It takes into account all the values 
in a set of data.   
 
Suppose the test result values are : Nxxx ,,, 21 L  
 
Population Standard Deviation: It is denoted by the Greek symbol σ and 
is given by root mean squared deviation from the mean µ .  That is  
 

( )

N

X
N

1i

2
i∑

=
µ−

=σ  

 

Where µ  is the population mean  ( )
N

xxx N+++= L21µ    

 



 33

Sample Standard deviation (s):If the sample result values are 

n21 x,,x,x L .  It is given by  
 

( )

1n

xx

s

n

1i

2
i

−

−
=

∑
=

 

where   
n

xxx
X n+++= L21  

Variance :Population variance ( )2σ  and sample variance ( )2s  
are given by 
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N
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Example  : Standard deviation of the sample test values: 
 

X XX −  ( ) 2XX −   

15 
 

18 
 

20 
 

21 
 

26 

-5 
 

-2 
 
0 
 
1 
 
6 

25 
 
4 
 
0 
 
1 
 

36 

 

( )

062.4
4
66

XX
1n

1
s

20
5

100
X

2

==

−
−

=

==

∑

v

 

100 0 66  
 

Sample Standard deviation (s) = 4.062 and sample variance = 5.16
4

66=  
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Benzene 
Concentarions 

Frequency Mid-
Point 

Mxf  ( ) fMM 2−  

 (f) (M)   
3.265  -  3.295 
 
3.295  -  3.325 
 
3.325  -  3.355 
 
3.355  -  3.385 
 
3.385  -  3.415 
 
3.415  -  3.445 

5 
 

23 
 

36 
 

27 
 
8 
 
1 

3.28 
 

3.31 
 

3.34 
 

3.37 
 

3.40 
 

3.43 

16.40 
 

76.13 
 

120.24 
 

90.99 
 

27.20 
 

3.43 

0.02042 
 

0.02643 
 

0.00005 
 

0.01839 
 

0.02518 
 

0.00074 
 100  334.39 0.09121 

( )[ ]22 XnfX
1n

1
s:Note

03035.0
99

09121.0
sand,3439.3

100
39.334

M

−
−

=

====  

 
 
Coefficients of Variation:  The Standard deviation is an absolute measure 
of dispersion  that expresses variation in the same units as the original data.  
It cannot be a sole basis for comparing two distributions especially if the 
data are measured on different scales or if larger mean has larger variation. 
In such cases, we  use coefficient of variation.  It is a relative measure of 
variation.  It relates the standard deviation and the mean and expresses 
standard deviation a percentage of mean.  The formula for coefficient of 
variation is  
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Coefficient of variation (CV)   = 
( )

( ) 100x
Mean

deviationdardtanS
µ

σ
. 

 
 
 
Example:  Laboratory 1 can compete on an average 40 analyses per day 
with a standard deviation of 5.  Whereas laboratory 2 can complete 162 
analyses per day with a standard deviation of 15.  Which laboratory shows 
more consistency. 
 
Solution:  At first glance, it appears that laboratory B has three times more 
variation in the output as compared to Laboratory A.  But Laboratory B has 
more output per day.  Considering all this, we need to compute the 
coefficient of variation. 
 

Lab 1:   Coefficient of Variation = %5.12100x
40

5 =  

Lab 2:   Coefficient of Variation = %4.9100x
160

15 =  

 
Laboratory B has less relative variation. 
 
BOX PLOT  

Box-and-whisker plot (box Plot) is a powerful graphical summary of 
distributional characteristics of data.  The box plot captures main features of 
location, spread and shape of a distribution.  It provides an informative, 
transparent data display for decision making.  
 
A box plot consist of a box, whiskers and outliers.   
 
The box plot as drawn is shown in Figure 1 
 
 
 
 
 
 



 36

 
                                *                           Outlier 

 
 Maximum value   

 
 
  
 75th percentile )( 3Q  

 
 
 
 
 
 
 50th percentile (median) )( 2Q  
 
  
 Mean (optional) 
 
  
 25th percentile )( 1Q  
 
  
 
 
 Minimum value   
 
  

Figure 1  :  Box Plot 
 

 

The box contains a middle 50 percent of the data, the bottom of the box is at 
the first quartile )( 1Q  and the top is at the third quartile )( 3Q  value.   The 
median, the mid point of the data set is shown as a line across the box.  
Therefore 

4
1   of the distribution is between this line and the top of the box, 

and  4
1  of the distribution is between this line and the bottom of the box.   

Thus the median line divides the box into two smaller boxes which represent 
the upper and the lower central quarter of the data. 
 
The outer parts of the data set or the ``tails’’ are the whiskers.  The whisker 
are plotted by lines that extend from the top and the bottom of the box to the 
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extreme data values (maximum and minimum) that are not taken to be 
outliers. 
 

The mean of the data set is indicated by plus sign (+).   

 

Interpretation of the box plot 

• Box covers middle half of the data  

• Whiskers show range of the data  

• Symmetry is indicated by the box, the whiskers and the location of the 

mean.  Closer the mean is to the median, the more symmetrical the 

distribution.  In case of skewed data the box plot is not symmetric 

• Position of the box and median gives the location of the data 

• The length of the box is proportional to the inter quartite range (IQR) 

gives the dispersion.  Thus larger boxes have larger dispersion 

• Outliers are points outside the lower and upper limit and are plotted 

with asterisks.  

The limit used for identifying the outliers are: 
Lower Limit:   )(5.1 131 QQQ −−  
Upper Limit:     )(5.1 133 QQQ −+  

                       The length of the whiskers should not exceed 1.5 )( 13 QQ −  

• Different data sets from two or more groups can be compared by 
constructing box plots side-by-side.  In this case width of the boxes 
can be drawn proportional to the sample size of the data sets.  

 
Exercise :   Consider the data on presence of methyl tertiary butyl ether in 
water from two different sources.  
 
Source A:                 509, 509, 516, 518, 510, 514, 511, 504, 523, 501, 511, 
503, 510, (MTBE in Water)          495,  506, 511, 533, 512, 509, 507  
 
Source B:                 504, 524, 515, 508, 513, 520, 536, 529, 521, 510, 502, 
528, 536, (MTBE in Water)          528, 516, 511, 519, 512, 524, 523    
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CHAPTER – 5  
 

PROBABILITY AND STATISTICAL DISTRIBUTIONS 
 
Introduction:   
 
In our everyday language, when we use the phrases ' most likely ; 'highly 
probable', 'less likely' etc. what we are really doing, almost unconsciously, is 
that we are expressing our degree of belief in the occurrence of certain 
special events. In probability theory, these concepts are formalized and rules 
are developed to obtain quantitative estimates of probability of events so that 
the estimation procedure is freed from the shackles of subjective judgment. 
 
Experiments And Events :  
 
An experiment is some well-understood procedure or process governed by a 
set of rules, whose outcome can be observed.  A random experiment is an 
experiment whose outcome is not uniquely determined by any theory; but 
the set of possible outcomes is determined.  The characteristic feature of an 
experiment is that it can be repeated infinitely.  The set of all possible 
outcomes is called the sample space.  An event is any subset of the sample 
space. 
 
Examples of deterministic experiments are : 
 

(i) Observing the distance traveled by a car running with an average 
speed of 45 Km. for three hours. 

(ii) Measuring exactly the amount of heat generated in an electrical 
circuit having resistance R ohms and carrying current I for t 
seconds, 

 
In these experiments the outcomes can be predicted with great accuracy 
using the laws of  physics and elementary mathematics. 
 
On the other hands a random experiment is characterized by a set of possible 
outcomes, the set having more than one number.  
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Examples of random experiment are : 
 

(i) Tossing a coin and observing whether it falls head or tail. 
(ii) Observing whether it rains or not the next day. 
(iii) Noting down number of absentees exceeding a specified number in 

a shift. 
(iv) Whether an electrical/electronic equipment passes all tests in final 

inspection. 
(v) Observing the number of batches of items accepted by the 

customer on sampling inspection. 
(vi) Number of blow holes in a casting. 
(vii) Test result value obtained after testing the sample 

 
An event ( or subset of the sample space) of a random experiments may be 
called a random event. 
 
Probability Theory provided the foundation for use of Statistical methods in 
solution of problems involving random events. 
 
Probability  And its Measure:  
 
Before we evaluate the probabilities of random events in numerical terms, 
we must choose a unit of measurement.  Such a unit is called the probability 
of a sure event.  An event is called a sure event .  An event is called a sure 
event  if it will certainly occur in the given experiment.  For instance, the 
appearance of either head or tail on tossing a coin is a sure event.  The 
probability of a sure event is assumed equal to one, and zero probability is 
assigned to an impossible event  i.e the event which in the given experiment, 
cannot occur at all (e.g. the appearance of ten number of spots on the face of 
a six-faced die).  We can also state intuitively that the probability of the 
occurrence of head in tossing a coin is 0.5.  In most of the practical cases of 
a random events, the probability will be having values other than 0, 1 and 
0.5.  However, probability of any  random event will always be in the 
interval between zero and one.  Now the question is "How do we measure 
the probability of an event ". 
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Classical Method : 
 
The classical method of measuring the probability of an event A arising out 
of an experiment, denoted by P(A) is  
 

( )
n

f
AP =       where   f    =   number of outcomes favourable to A. 

and n  =  Total number of equally likely, mutually exclusively and 
collectively exhaustive outcomes of the experiment. 
 
Example - 1 :  
 
Tests of water samples declares water fit (F) or unfit (U) for drinking.  What 
is the probability of getting [Unfit, Unfit] drinking water samples in two test-
tubes ? 
The possible outcomes are  (U,U), (U,F), (F,U), and (F,F). 
Thus the number of outcomes favourable for the event = 1. 
The number of equally likely, mutually exclusive and collectively 
exhaustive outcomes = 4 

So, the required probability 25.0
4

1 ==  

 
Example  
 
What is the probability that the sum of scores will be 9 while throwing  two  
dice  together having six faces each? 
 
Here the numerator can be realized from four outcomes viz . ( 3,6), ( 4, 5), 
(5,4) and ( 6, 3) and the total number of all possible outcomes = 36. 
 

So, the required probability = 
9

1

36

4 =  

 
The Classical Method is inapplicable in situations where we can not assume 
that the outcomes of experiments are equally likely.  For example, classical 
method cannot help us in finding the probability of the following events : 
 

1. Occurrence of head in tossing a biased coin. 
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2. Failure of a tube/equipment/device after working for 1000 hours. 
 
To help us in such situations, we make use of the Relative Frequency 
method of assessing probability :  
 
Relative Frequency Method :   
 
Relative frequency of an event  A  
 
 

n
f

madensobservatioorconductedtrialsofnumberTotal
observedisAeventtimesofNumber ==

 
 
Probability can be estimated by the relative frequency where n is infinitely 
large.  Symbolically,  
 
Probability of an event 
 

n

f
limA n ∞→=  

 
What we really mean is that the relative frequency of an event tends to its 
probability.  To be more specific, the implication is that if the number of 
independent trials is sufficiently large, then with a practical confidence the 
relative frequency will be as close to the probability as desired. 
 
The above method is valid due to ' statistical stability ' in the occurrence of 
random events and provides us with the method of estimating probability as 
long term proportion of occurrences. 
 
Next we discuss a few indirect methods which make it possible to calculate 
the possibilities of composite events in terms of probabilities of simpler 
events.  They are the Addition Rule and Multiplication Rule of probability. 
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 Addition Rule of Probability  
 
The probability that one of two mutually exclusive events ( it does not 
matter which of them) occurs is equal to the sum of the probabilities of these 
events. 
 
This rule is expressed by the formula. 
 

( ) ( ) ( ).BPAPBUAP +=  
 
Example : 
 
The LSL and USL of ambient air of  an area of  good category has AQI in 
the range of 20 to 40.   
 
Let us define the elementary events as follows :  
 
A : the event that sample has AQI below LSL 
 
B:  the event that sample has AQI above USL 
 
The probabilities of these events was estimated from the past inspection 
records  from  a particular area by making use of relative frequency method.  
Accordingly it is found that   P(A) = .05 and  P(B) = .03.  What is the 
probability that a random sample taken from the same area  will be outside 
the specification? 
 
So, the required probability can be estimated as  
 
P(A U B) = (A)  = .05  + .03  = .08 
 
The practical interpretation of this probability is that we expect 8% of  the 
sample will be  outside the specification  as long as no major changes in the 
air quality takes place.  
Multiplication Rule of Probability  
 
If A and B are two independent events, the probability of their joint 
occurrence is equal to the product of the probabilities of the two events .  
This rule is expressed by the formula 
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( ) ( ) ( )BPAPBAP =I  
 

If the two events occur in successive trials then the order occurrence should 
also be taken into account. 
 
Example :  
 

a. In the previous example of AQI of ambient  air, what is the  
probability that in two successive samples taken, one sample is below 
LSL due to low AQI and the other sample is above USL due to high 
AQI ?.  

 
DL  :  Sample is below LSL due to Low AQI 
DH  :  Sample is above USL due to high AQI 
 
 
A  :  The event that first sample has low AQI and second sample has  
          high AQI 
B  :  The event that first sample has high AQI and second sample has  
          Low AQI. 

 
( ) ( ) ( )
( ) ( ) ( ) 0015.05.x03.DPDPBP

0015.03.x05.DPDPAP

LH

HL

===
===

  

 
So, the required probability = P(A)  +  P(B)  = 0.0015  +  0.0015  = 0.003 
 
Statistical Distributions: 
 
Binomial Probability Distribution 
 
The conditions for occurrence of Binomial probability distribution as 
follows : 
 

1. Outcome of a trial is classified as ' success' or 'failure'. 
2. Probability of success ' p' remains constant from trial to trial . 
3. n independent trials are made. 
4. Random variable of interest is the number of success (x) in n trials. 
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The probability of getting x number of successes in n trials is given by 
 

( ) ( ) n,2,1,0xforp1p
x

n
)x(pxXP xnx

L=−






=== −
 

 
 

Also note that ( ) ( ) npqXVandnpXE ==  where q = 1 – p  
 
 
Example  : For n = 18 and p = 0.1 
 
 
   x   : 0               1             2              3            4                  5             6         7            
P(x) : 0.150      0.300     0.284       0.168      0.070          0.022      0.001   0.000     
   

 
Average  (X)  = np 
 

Variance (X) = npq  and standard deviation of (X) = npq 
 
Poisson Distribution:  
 
Examples of random variables having Poisson distribution are  
 

i. number of breakdowns in equipments in fixed time intervals 
ii. number of defects in slides of same type 
iii. number of pathogens in drops of water of same point.  

 
Thus the random variables, of interest can occur either in time or in space.  
The conditions given rise to Poisson distribution are 
 

1. Occurrence of event in short interval of time or space is 
proportional to time or space interval. 

2. Probability of two or more occurrence in short interval of time 
or space is negligible and can be considered zero., 

3. occurrences are independent 
 
Random variable : Discrete 



 45

 
Range of  L,3,2,1,0X =  
 

( )
!x

e
xXP

xλλ−
==  

 
Where λ  = average number of occurrences in fixed time interval or fixed 
size in space. 
 
Average (X) = λ  & 
 
Variance (X) = λ  &  
 
Standard Deviation = λ  
 
 
 
Normal distribution:  
 
The normal distribution is the most important continuous probability 
distribution.  It has been useful in countless applications involving every 
conceivable discipline.  The usefulness is due in part to the fact that the 
distribution has a number of properties that make it easy to deal with 
mathematically.  More importantly, however, the distribution happens to 
describe quite accurately the random variables associated with a wide 
variety of experiment. 
 
The normal distribution is completely specified by two parameters viz mean 
( )µ  and standard deviation ( )σ .  The probability density; function of normal 
distribution is  
 

( ) ∞+<<∞−=







 −
−

xforexf

x
2

2

1

2

1 σ
µ

σπ
 

 
where ( )µ   = mean and   ( )σ   = standard deviation 
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Examples of random variables are measurable characteristics like length and 
diameter of  components, chemical properties (say Si % in Grey Iron), 
electrical characteristics like resistance etc. 
 
The theoretical justification for the occurrence of Normal distribution is 
provided by the CENTRAL LIMIT THEOREM which states that the sum of 
a number of independent and identically distributed random variables each 
with a finite mean and variance will be closer to a Normal distribution as the 
number of random variables increases. 
 
Thus, when a random variable represents the total effect of a large number 
of independent small causes, the Central Limit Theorem leads us to expect 
the distribution of that variable to be Normal. 
 
Properties of a Normal  distribution 
 

1. It has  a bell shape. 
2. It is single peaked and thus unimodal. 
3. It is symmetric about the mean and Mean = Median = Mode.  All 

located at the center of the curve. 
4. The two tails of the  extend indefinitely and never touch the horizontal  

axis. 
5. The location and shape of the curve is determined completely by 

mean (µ ) and standard deviation (σ ). 
 
 

 µ 

       Graph of normal distribution 
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Area under the Normal Curve   
 
The total area under the normal curve is one.  The area under the curve is 
interpreted as the probability that is  for any normal distribution with mean 
(µ ) and standard (σ ), the area under the curve for selected interval between 

mean σ± k  that is between Mean σ− k and Mean σ+ k  is tabulated below 
 
 

K Area in % 
1 
2 
3 
1.96 
2.58 
3.09 
4 
5 
6 

68.26 
95.46 
99.73 
95.00 
99.00 
99.90 
99.99366 
99.99994266 
99.99999980 

 
 
 
 
 
For k = 2, Area under the curve between the limits Mean 

σ+σ 2meanand2 is given by 0.9546.  That is  
[ ] onsoandxob 9546.022Pr =+<<− σµσµ  
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Standard Normal Distribution  
 
A normal distribution with mean zero and standard deviation equal to one is 
called a standard normal distribution.  Thus the standard normal distribution 
has 1and0 =σ=µ .  If a random variable X has a normal with mean 
µand standard deviation σ , the random variable defined as  
 

.D.S

MeanXX
Z

−=
σ

µ−=   has mean zero and standard deviation one.  Z is 

called the Standard normal variable.  Normal probability table is provided 
for the standard normal variable (Z).  It may be noted that  
 

[ ] 






σ
µ−<<

σ
µ−=<< b

Z
a

PbxaP  

          -3                -2                    -1               0                1              2              -3 

2.5 % 

13.59 % 

34.13% 
34.13% 

13. 59% 

2.5% 

             68.26%  +-1 Sigma 
                  95.46% + -2  Sigma 
                  99.73% + -3  Sigma 
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This implies that  
 

[ ] [ ]
[ ] [ ] 9546.02222

6826.011

=<<−=+<<−
=<<−=+<<−

ZPXP

andZPXP

σµσµ
σµσµ

 

 
Example : 
 
A softdrink machine is regulated so that it discharges on average 300 ml per 
cup.  If the amount of drink is normally distributed with a standard deviation 
of 20 ml.   
 
(a) What fraction of cups will  contain more than 325 ml. 
 
(b) What is the probability that a cup contains between 285 ml and 335 ml. 
 
(c) What is the probability that cup will contain exactly 300 ml. 
 
(d) How many cups will overflow on an average if cups of size 340 ml are   
      used for the next 2000 drinks. 
 
 
Solution :  Let X denoted the quantity of soft drink per cup.  Here Mean 
( )µ  = 300 ml and ml20=σ  and X follows normal distribution.  We are 
required to find : 
 
 
 
P[X > 325 ml] or  
 
 
 
 
 
 
 
 
     µ = 300       325 

    σ = 20  
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Area under the normal curve above 325 ml.  Value of Z corresponding to X 
= 325  is  
 

25.1
20

25

20

300325
Z ==−= .  From tables we get this area equal to  

 
1 - P[Z < 1.25] = 1 - 0.8944 =  0.1056 = 10.56%.  Hence 10.56% of the cups 
are expected to contain more than 325 ml. 
 
 

(b) In this case, we need to find the area between the limits 285 ml and 
335 ml. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Z value corresponding  to 335  is  
 

75.1
20

35

20

300335
Z ==−=  

Z value corresponding to 285  
 

75.0
20

15

20

300285
Z −=−=−=  

  285              300           335 



 51

 
Required probability is  = P [  Z  <  1.75 ]  - P [ Z  < - 0.75]  =  0.7333 
 
Hence 73.33% of cups are likely to have soft drink between 285 ml and 335 
ml. 
 

(c) The probability is zero. 
(d) In this case, we first find the chances that X will be more than 340 

ml. 
 
Value of Z corresponding to 340 is  
 

 

2
20

40

20

300340
Z ==−= . 

 
Hence, P [ Z > 2 ] = 1 - [ Z ≤  2 ] = 1 –  0.9772 = 0.0228. 
 
Number of cups likely to  overflow  if cups of size 340 ml are used for the 
next 2000 drinks  = 2000 x 0.0228 = 45.6 cups. 
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CHAPTER – 6 

 
REPEATABILITY & REPRODUCIBILITY 

 
 

Bias : It is the difference between the observed average value of a 
characteristic and the true value or accepted reference value.  Bias is the 
measure of the total systematic error as compared to random error. There 
may be one or more systematic error components contributing to the bias.  A 
large systematic difference from the accepted reference value is reflected by 
a larger bias value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Laboratory Bias: The difference between the observed average of the 
test results from a particular laboratory and an accepted reference value. 
 
 
Bias of Measurement Method: The difference between the observed 
average value of test results obtained from all laboratories using that method 
and an accepted reference value. 
 
 
Stability:  Stability is the total variation in the measurements obtained with 
a measurement system on the same samples  when measuring a single 

 BIAS  

    Measurement  System’s 
         Average 

Reference Value 
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characteristic over an extended time period.  That is, stability is the change 
in bias over time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Precision: The closeness of agreement between independent test results 
obtained under stipulated conditions.  It describes the net effect of 
discrimination, sensitivity and repeatability over the operating range:  Size 
and time of the test or measurement system. ASTM defines precision to 
include the variation from different reading, instruments, people or 
conditions. 
 
The measure is usually expressed in terms of imprecision and computed as a 
standard derivation of test result.  Higher standard derivation reflects less 
precision. 
 
Repeatability : Variability in independent test results obtained with the 
same method on identical test items in the same laboratory by the same 

TIME 

Reference Value 
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operator using the same equipment within short interval of time.  It is the 
inherent variation in a within a system when conditions of testing are  fixed 
and defined, fixed samples, parts, instrument, standard, method, operator and 
environment and assumptions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Measures commonly used are :  Repeatability standard derivation, 
repeatability variance, repeatability coefficient of variance. 
 
Possible Causes for poor repeatability include : 
 

• Within sample or parts: form, position,  consistency 
 

• Within-instrument : repair, wear, equipment or fixture failure, poor 
quality or maintenance. 

 
• Within-standard: Quality, class, wear 

 
• Within-method: Variation in set up, technique, zeroing, holding, 

clamping, point density. 
 

• Within-appraiser:  Technique, position, lack of experience, 
manipulation skill or training, feel, fatigue. 

 

             Reference Value 

          Repeatability 
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• Within-environment: Short cycle fluctuations in temperature, 
humidity, vibration, lighting, cleanliness. 

 
• Violation of an assumption: stable, proper operation 

 
• Instrument design or method lacks robustness, poor uniformity 

 
• Wrong gauge for the application 

 
 

• Application: part size, position, observation, error (readability, 
parallax) 

 
Repeatability:  Variability or precision in test results obtained with the 
same method on identical samples  in different laboratories with different 
operators using different equipment. 
 
Reproducibility is typically defined as the variation in the average values of 
the measurements or test values obtained by different laboratories. 
 
 
Potential sources of reproducibility error include: 
 

• Between  samples: average difference when measuring types of parts, 
A, B, C etc, using the same instrument, operators and method 

 
• Between-instruments: average difference using instruments A, B, C 

etc., for the same parts, operators and environment. 
 

• Between-Standards: average influence of different  setting standards 
in the measurement process. 

 
• Between-methods: average difference caused by changing point 

densities, manual versus automated systems, zeroing, holding or 
clamping methods, etc. 

 
• Between-appraisers (Lab Assistants):  average difference, between 

A, B, C, etc., caused by training, technique, skill and experience. 
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• Between-environment: average difference in the measurements over 
time  caused by environmental cycles, this is the most common study 
for highly automated systems in product and process qualifications. 

 
• Violation of an assumption in the study. 

 
• Instrument design or method lacks robustness. 

 
• Lab Assistants training effectiveness 

 
• Application – part size, position, observation error (readability, 

parallax). 
 
 
Estimation of Repeatability and Reproducibility :  
 
In an inter-laboratory programme, a large number of laboratories carry out 
repeats  test on the same sample of homogeneous material.  The scheme can 
be depicted as shown below. 
 
 
      Lab  1                                 Lab 2           …………        Lab  k 
 
 
 
 
 
 
     
  1      2  …    n        1          2        ….. n             1              2         …..n         
 
If the  sample is tested only once in different laboratories, the variation 
present in the  test results  value will reflect combined variability arising 
from with-in laboratory variation and of the variability arising from 
between-laboratory variation.  In such cases it is not possible to estimate 
repeatability and reproducibility of the measurement system. 
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Description of the Model:   The repeatability and reproducibility of the 
measurement system can be estimated from the analysis of the data from a 
group of laboratories selected from a population of laboratories using the 
same method model 
 
y = m + B + e 
 
where  
 
m :   is the mean of the results 
B  :  is the laboratory components of the bias under repeatability condition 
e  :  is the random variability occurring during any measurement under 
        Repeatability condition. 
 
 
Let 2

rσ  denote within-laboratory variance.  It is known as a repeatability 
variance. 
 

2
Lσ :  the variance of B it is the between Laboratory variance,  2

Lσ  
 
The sum of the between laboratory variance and the within-laboratory 

variability is known as reproducibility variance  (2Rσ ) 
 
 

Reproducibility variance = 2Rσ  =  2
Lσ   +  2

rσ  
 
Example: 
 
Suppose there are four participating laboratories and each laboratory carry 
out three repeat test on the same  sample. 
 

  Mean Variance 
Laboratory 1 
Laboratory 2 
Laboratory 3 
Laboratory 4 

25 
26 
21 
25 

27 
22 
24 
24 

26 
24 
24 
26 
 

26 
24 
23 
25 

1 
4 
3 
1 
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Estimate of Repeatability 
 

25.2
4

9

4

13412 ==
+++

=rS  

 
 

Variance in laboratory means 
 

=  1.67  is an estimate of 2
2

3 L
r σσ

+  

 

Hence  2
L3

25.2
67.1 σ+=  

 

=2
LS estimate of 92.075.067.12

L =−=σ  
 

Estimate of reproducibility ( ) 17.392.025.2SSS 2
L

2
r

2
R =+=+=  

 
1. Repeatability limit = 20.425.2x8.2 =  

2. Reproducibility limit = 98.417.3x8.2 =  
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CHAPTER - 7 
 

ESTIMATION AND CONFIDENCE INTERVALS  
 
The objective of statistical inference is to draw conclusions about population 
characteristic or true value using sample test result values. Statistical 
estimation  makes considerable use of quantities  computed from the 
observations in the sample.  We define a statistic as any function of the 
sample test results.  For example, sample mean and sample standard 
deviations are both statistics. 
 
Types of Estimation:   
 
We can make two types of estimation about a population characteristic or 
true value using the test results obtained. 
 
A Point Estimation :  A point estimate is a single value that is used to      

                               estimate an unknown population parameter or true  
                               value. 
 

An interval Estimate: An interval estimate is a range of  values used to   
                                 estimate a population parameter or true value. 

 
Point Estimation : The objective of statistical point estimation is to make 
an estimate of the population or true characteristics  with the help of sample 
statistic.  For example we might estimate the true mean octane rating of a 
particular type of fuel with the help of sample mean ( )X . When the size of 
population is very large or infinite, we never know the true value of the 
population mean.  We can only make estimate of the population mean. The 
estimate is bound to vary depending upon the random samples selected and 
the precision of testing method used.  The sample mean rarely  coincides 
with the population mean.  Some related concepts and definitions are  
 
Estimator:  The function of the observation chosen to estimate the 
population parameter, e.g. sample mean is an estimator of population mean 
µ .  Two important desirable properties of an estimator are:  (i) unbiasedness 
(ii) minimum variance. 
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Estimate: The particular value of the estimator in given situation 
 
Unbiased estimator: Whose expected or average value taken over an 
infinite number of similar samples or all possible samples equals the 
population parameter being estimated.   
 
Standard error :The standard derivation of the estimator.  For example, the 

standard error of sample mean ( )X  is given by  
n

σ
 

 
Population 
Parameter 

Point Estimate Standard 
error 
 

Population 
Proportion ( )P  

Sample Proportion 
( )P  

( )
n

p1p −
 

 
Population Mean 
( )µ  

 
Sample Mean ( )X  n

σ
 

Population Variance 

( )2σ  
( )

1n

XX

s

n

1i

2
i

2

−

−
=
∑
=

 

 

 
 
The main disadvantages of point estimate is that it provides us only with a 
single value as the estimate of unknown population parameter.  It does not 
provide information about the precision of the estimate i.e. about the 
magnitude of error due to  sampling.  The sampling distribution of the 
estimator and the sample size will determine the extent of closeness of the 
estimate to the true value. In many practical situations it will be desirable not 
only to provide an estimate but also to establish an interval within which we 
can expect with a given degree of probabilistic confidence, that the unknown 
parameter would like.  The procedure is known as confidence interval 
estimation.  The width of the interval provides. 
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Confidence Interval:  Any confidence interval has two aspects 
 

(i) An interval computed from the data. 
(ii) The confidence level attached to the interval. 

 
 
It gives the probability that the interval include the parameter or true value.  
User can choose the confidence  level.  In most cases 95% confidence or 
higher is taken.  The confidence level is usually written in the α−1 .  For 

example, 95% confidence level corresponds to α−1  = 0.95  or 05.0=α . 
 
A α−1   confidence interval for the parameter θ  is given by two statistics  

U and L such that [ ] α−=≤θ≤ 1ULP .  L is called the lower confidence 
limit.  
 U is called the Upper confidence Limit. 
 
Confidence Interval of Population mean ( )µ  
 
(1) When population standard deviation (σ ) is known 
 
The  ( α−1 ) percent confidence interval for population mean ( )µ  is given 
by : 
 

n
ZX

2

σ± α  

where 
2

Zα  is the value of the standard normal variate exceeded with 

probability 2
α . 

 
(2) When population standard deviation σ  is unknown.  In this case the 
confidence interval is given by  
 

n
s

tX
2

α±  
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where X is the sample mean and S  denotes the sample standard deviation, 

given by 
( )

1n
XX

s
2

−
−= ∑

 

and  
2

tα  is the value obtained from t distribution with ( n-1) degrees of 

freedom  such that it is exceeded by probability 
2

α
 

 
Example: 16 observations made on the SO2 content in the air and  the 
values are given below : 
 

97.99,  96.25,  97.51,  93.63,  92.63,  92.51,  95.44, 94.80 
                99.21,  89.19, 89.50, 93.73,  97.34,  93.64,  87.25, 96.11. 

 
(i) Obtain a point estimate of the population mean SO2 content. 
(ii) Establish 95% confidence interval for the true mean SO2 content. 

 
Solution  : 
 
We have sample mean (X ) = 94.98  and sample standard deviation = 3.73. 
 

(i) Point estimate of true mean SO2 content  is X  = 97.98 
(ii) 95% confidence level for true mean SO2 content is given by 

n

s
tX

2
α±  

      
We have t - distribution (table) with degrees of freedom 16 -1 = 15, the 
value of  13.2t

2
=α .  Hence the required confidence interval is given by   

97.198.94
16

73.3
x13.298.94 ±=± . 

 
  That is the true mean SO2 content lies between 93.01 and 96.95. 
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Example : Out  of 1000 people treated with air of particular composition, 
200 showed allergic reaction. With 99% confidence level, estimate the 
proportion of the population that would  show an allergic reaction to the air 
of particular composition. 
 
 
Solution : Here sample proportion showing allergic reaction is 

2.0
1000

200
P == .  This gives us a point estimate . That is 20% of the people  

are likely to show allergic reaction.   
 
  99 % confidence level is given by 
 
 

( )

0326.020.0
1000

8.0x2.0
58.220.0

n
P1P

zP
2

±=±

−± α
 

 
 
that is  99% confidence interval for the proportion of  population likely to 
show an allergic reaction to the particular composition of air is 16.74% to 
23.26% 
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CHAPTER - 8 
 

TEST  OF HYPOTHESIS FOR DECISION MAKING  
 
Often, it is desired to test on the basis of sample data whether the population 
mean or proportion  differs from a specified standard or historical value.  
Hence we are concerned with drawing conclusion about population mean 
( )µ  or proportion based on sample data.  
 

Hypothesis testing begins with an assumptions, called a Hypothesis, that we 
make about population parameter.  Then we collect sample data, produce 
sample statistics, and use this information to decide how likely it is that our 
hypothesized population value is correct.  
 

Basic Concepts  : 

‘Null Hypothesis’  (denoted by H0),  it asserts that there is no difference 
between the population from which the sample has been selected and the 
population whose parameter is specified under the hypothesis.  Null 
hypothesis is formulated with the hope of rejecting it.  Simultaneously we 
must stipulate the alternative hypothesis. Alternative Hypothesis (denoted 
by H1)  which is formulated with the hope of provisionally accepting it.  
 

Type I  and  Type II Error  :  

Whenever we test a statistical hypothesis with sample data, we shall have 
one of the four possible results along with their probabilities in parenthesis 
summarised in the table : 
 

Reality 

Decision 

H0 

True 

H0 

False 

Accept  H0 Correct Decision 

)1( α−  

Type  II  Error 

( )β  

Reject   H0 Type I Error 

( )α  

Correct Decision 

( )β−1  
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Type I Error :  Rejecting a null hypothesis (H0) when it is true. 

 

Type II Error :   Accepting a null hypothesis (H0)  when it is false.  

 

Level of significance  ( )α .  The probability of committing Type I error is 
designated by  α  called the level of significance.   
The probability of committing  Type II error is designated by  β . 

 

The decision criteria for rejecting the Null Hypotheses can also be stipulated 
in terms of ‘critical region’  of the test statistic which is a function of sample 
observations and whose sampling distribution is known under the 
assumption of null hypothesis.  
 

Critical region  is that range of values for test statistic whose probability of 
belonging to that range is equal to the level of significance when the null 
hypothesis is true.  
 

 

One Sided Test 

 

It may be noted that a test of any statistical hypothesis where the alternative 
is one sided such as  
                  0100 :;: µµµµ <= HH    or perhaps 

                  0100 :;: µµµµ >= HH  

is called a one-tailed test.  The critical region for the  0µµ >   lies entirely to 
the right tail of the distribution of the test statistic concerned, while the 
critical region for the alternative hypothesis  0µµ >   lies entirely to the left 
tail.  A test of any statistical hypothesis where the alternative is two sided 
such as  
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Both Sided Test 

0100 :;: µµµµ ≠= HH  

 

is called a two-tailed test.   The alternative hypothesis states  that either  

0µµ <   or 0µµ > .   Values in both tails of the distribution constitute the 
critical region.  
 

Whether one sets up a one-sided or a two sided alternative hypothesis will 
depend on the conclusion to be drawn if  H0  is rejected.  The location of the 
critical region can be determined only after  H1  has been stated.  
 

Steps for Test of Hypothesis  

Now, for give sample size, we can outline the steps in tests of hypothesis as 
follows :  

1. State the null hypothesis  (H0) and alternative hypothesis (H1). 
2. Choose the level of significance  α  . 
3. Select a statistic whose sampling distribution is known if  (H0)  is true 

and certain other assumptions are satisfied.  
4. Find the critical region for the statistic, which depends on α   and the 

probability distribution of the statistic.  
5. Compute the statistic.  
6. Draw the conclusions.  If the statistic falls in the critical region, reject  

(H0) .  Otherwise accept it provisionally till further evidence is 

accumulated and tested again.  

 

Test for Specified  Proportion  : 

Here we have to test the null hypothesis  H0  :  P  =  P0  on the basis of 
sample proportion  p  =  r / n  where  r is the number of items falling into the 
category of interest out of n randomly selected items.  
 

For H0 :  P  =  P0  the appropriate test statistic may be ‘number of items 
falling into the category of interest’  (R)  which follows Binomial  
Distribution.  
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When either P 5.0≤  and  np > 5  or  P   >    0.5  and  n (1 – P)  >  5, we may 
use Normal approximation to Binomial distribution so that the test statistics 
becomes  

( )00

0

1 PPn

Pnr
Z

−
−=  

Z  follows standard Normal distribution.  

 

The test statistic can also be expressed in terms of sample proportion  p  =  
r/n.   In this case 

( )
n

PP

Pp
Z

00

0

1−
−=  

Here also Z follows standard Normal  Distribution.  

 

Example  : 

A company claimed that in a particular region 55% of the consumer use 
products made by them.  In a random sample of 1000 consumers 510 
consumers agreed that they actually use the product made by this company.  
Can be conclude at 5% level of significance that the  claim of the company is 
correct ? 
   

H0  :   (P  =  .55)  against   H1  :   (P  <  0.55) 

54.2
732.15

40

5.247

40

45.55.1000

550510

)P1(nP

nPr
ZStatisticTest

00

0

−=−=−=

××
−=

−
−

=
 

Critical region  will be  Z    =   <  -  1.64. 

 

Conclusion  :  

Since the observed value of the test statistic  falls in the critical region, hence 
we reject  H0  and conclude that the company claim is not correct.  
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Testing  for  a  Mean  ( )µ  : 

A random sample of 8 cigarette of a certain brand has an average tar content 
of 18.6 milligram and sample standard deviation of 2.9 mg.  Is this in line 
with manufacturer’s claim that average tar content does not exceed 17.5 mg.  
Take  α  =  1%. 
 
              ( ) ( )5.17:5.17: 10 >= µµ HVSH  

 

              
( )

073.1
025.1

1.1

8/9.2

5.176.18

/
==−=−=

ns

X
T

µ
 

Critical Region  :   From  t – distribution with  d.f.  =  8 – 1  =  7  lies in the 
upper tail  (2.99  +  ∞ ).     Do not reject   H0  and  hence accept  H0 . 
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CHAPTER – 9 
 

REGRESSION ANALYSIS 
 

INTRODUCTION 
 
In many fields like business, administration, transport, education and in 
industry, we are required to establish the relationships among variables of 
interest.  For example, the relationship between price and demand, the 
number of units produced and production costs, absenteeism rates and 
overtime costs, input and output.  The nature of the relationship helps us to 
make predictions or forecasts, provide detailed understanding of processes, 
exercise better control, and to optimise our processes and systems.   One 
way to find the relationship is by means of regression analysis.  
 
Regression Analysis 
Regression analysis provides quantitative techniques for establishing the 
relationship as a formula between the variables being considered.  
Regression analysis enables us to determine and utilize a relation between a 
variable of interest, called the dependent variable, and one or more 
independent variables or predictor variables.  Y denotes the dependent 
variable whose value we want to predict.    X denotes the independent 
variable or predictor variable.  After we have estimated the relationship, we 
use correlation analysis to determine the strength of the linear relationship.  
The correlation analysis tells us how well a formula/equation actually 
describes the linear relationship. 
 
 
Relationship between two variables 
It is important to understand the difference between mathematical and 
statistical relationships. 

 
Mathematical Relationships 
When the mathematical relationship between X and Y is exact, the value of 
Y is exactly determined once the value of X is specified.  For example  

XY 50100 +=  
where X denotes the number of persons attending a dinner party and Y the 
cost of the dinner party.  Overhead cost for the party is Rs. 100 and the 
dinner cost is Rs. 50 per head.   In this case, once we specified the value of 
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the variable X, the value taken by the variable Y is completely known to us.  
If 10 people attend the party, that is X = 10, the cost of dinner is  

Y = 100 + 50 ×  10 or Y =  600. 
 
Statistical Relationship 
In this case, the value of the dependent variable Y is not completely 
determined by the value of the independent variable X.   For example, we 
may find that two families have the same income but their expenditures on 
food items are not same.  This difference may be due other factors like, age 
or a difference in food habits that we are not considering.  
 
Similarly, consider the relationship between fuel consumption and the speed 
of a vehicle.  This relationship will not be exact as the fuel consumption 
depends on other factors apart from the speed of the vehicle.  These factors 
include driving habits, road conditions and the age of the vehicle.  In 
regression analysis, we must know or assume the functional form of the 
relationship between the variables.  This is done by setting Y equal to some 
function which depends on X and on some parameters.  We may arrive at the 
desired function by one of two methods. 
 

(a) From analytical or theoretical considerations. 
(b) By examining the scatter diagram obtained by plotting the data on a X 

by Y plane.  The values of Y are represented on the vertical scale and 
the X values on the horizontal scale.   The pattern of points in the 
scatter diagram reveals  what function form may be used for the 
purpose of analysis.  

 
 
FITTING A STRAIGHT LINE  
 
We now consider a basic regression model where the relationship is linear, 
i.e.  for any value of X the mean of Y is given by X10 ββ + .  Since, in 
general, an observed value of Y will be different from this mean value, we 
denote the difference by ε  and write the statistical relation in the form  

εββ ++= XY 10  

where  0β  and  1β  are unknown parameters.   0β  represent the Y intercept 
and  1β  represents the slope of the line.  ε  represent the random deviation of 
the observed Y from the mean value X10 ββ + .   ε  is called the random 
component.  The value of ε  for any observation depends on the possible 
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error of measurement and on the values of the variables other than X.   We 
make the following assumptions for carrying out regression analysis: 

i) 0)( =εE , variance 2)( σε =  and the error component follows a 
normal distribution. 

ii) The values of X are known i.e., there is no randomness  involved 
in the value of X. 

 
Least squares criterion 
The regression parameters 0β  and 1β  are unknown and must be estimated 
from sample data.   Point estimates of the parameters are commonly 
obtained by a method of estimation called the method of least squares.  As 
per this method we choose the parameter such that the sum of the squares of 
error is minimum.  That is, parameters are obtained such that  

2
10

2 )( iii XYS ββε −−==∑ ∑  

is minimum.   It can be shown that the least square estimators for the linear 
regression are obtained by solving the following two equations: 
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These equations are called normal equations, the solution of which is given 
by  
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where b0  and b1 denote the estimates of 0β  and  1β   respectively.  Y  and  X  
are the mean values of Y and X respectively.  In the least squares method, 
we minimize the sum of the squares of the vertical distances of the points 
from the line.   
 
Prediction of mean value of Y 
The prediction of E(Y), the mean value of Y for a given value of X, is 
denoted by ,Ŷ  and is given by  

.ˆ
10 XbbY +=  
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Ŷ  is also called the fitted value of Y.  The difference between the observed 
value Y and the fitted value Ŷ  is called the residual.  Thus the residual for 
the ith  observation  is given by iii YY ˆ−=ε . 

The sum of the residual is zero, i.e. 0
1

=∑
=

i

n

i

ε .  The estimate of error variable 

2σ  is given by  
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−
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YY
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2
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Analysis of Variance Approach 
Analysis of variance (ANOVA) is highly useful technique for regression 
analysis.   
 
 
Partitioning of Total Sum of squares 
The uncertainty associated with a prediction is related to the variability of 
the Y observations as given by the deviations  .YYi −   The greater the 

variability in the data, the larger will be the deviations  .YYi −    The measure 
of the variability of the observations is expressed in terms of the sum of the 
squares of the deviations  YYi − , it is denoted by TSS ,  Total Sum of Squares 
and equals 

2

1

)( YYTSS
n

i
i−= ∑

=

 

It is also called the sum of squares about the mean.  This total sum of 

squares can be expressed as ∑ ∑∑
= ==
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2)ˆ( is called sum of squares about the regression or the sum of 

squares due to error (SSE).  2

1

)ˆ( YY
n

i
i −∑

=

 is called the sum of squares due to 

regression (SSR).    SSR may be viewed as a measure of the effect of the 
regression in reducing the variability of Yi ‘s.  If all the observations fall on 
the fitted regression line, all deviations will be zero.  We have 

TSS  =  SSE  +  SSR 
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Partitioning of Degrees of Freedom  
Corresponding to the partitioning of the total sum of squares TSS into 
components SSR and SSE,  we have the partitioning of the degrees of 
freedom. 

TSS = 2

1

)( YY
n

i
i −∑

=

 has 1−n  degrees of freedom associated with it.   SSE has 

2−n  degrees of freedom  and finally SSR has one degree of freedom.  
 

Mean Square  
A sum of squares divided by its associated degrees of freedom is called a 
mean square.  The regression mean square,  denoted by MSR is given by    

1

SSR
MSR = .  The error mean square is denoted by MSE and 

2−
=

n

SSE
MSE . 

 
ANOVA TABLE 
It is helpful to summarise the information on sum of squares (SS), degrees of 
freedom (df) and mean square (MS) in the form of a table called ANOVA 
Table.  The table below provides a basic format for the ANOVA table for 
regression analysis.  
 
                                                    ANOVA TABLE 

Source of 
Variation 

Sum of Squares 
(SS) 

d.f. M.S. 

Regressio
n 

SSR = 2

1

)ˆ( YY
n

i
i −∑

=

 1 

1

SSR
MSR =  

Residual SSE = 2

1
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i
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  2−n  
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MSE  

Total TSS = 2
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 provides an estimate of  2σ  and 2r  =  coefficient 

of determination is given by  =  
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= and from this we can, 

obtain the correlation coefficient (r). 
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EXAMINING THE FITTED STRAIGHT LINE  
 
Standard error of intercept (b0) and the slope (b1).  
We note that XbYb 10 −= , and )( 0bV  is given by  
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and standard error s.e. of  b0 is the square root of  v(b0). 
 
When σ  is unknown, the estimate of s.e. (b0)  is obtained by replacing σ  by 
s,  i.e. 
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the standard error of slope (b1) is given by  
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Confidence Interval for b1  

%100)1( α−A  confidence interval for the parameter 1β  is given by  

2

1

2/1

)( XX

s
tb

n

i
i −

±

∑
=

α  

where  2/αt  is the value of the t-distribution with (n− 2) degrees of freedom.  
 
To test the Null Hypothesis: 

ββ =10 :H ,  we use the test statistics  
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The critical regions are 
 

           :1H  Reject 0H   if 
ββ <1  
ββ >1  

    ββ ≠1  

             αtt <  

αtt >  

2/αtt −<  or  

2/αtt >  
 

 
Confidence Interval for Mean Response: 
 

)1( α−A  100%  confidence interval for the mean response at 0XX =  is 
given by  
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where 2/αt  is a value of the  −t   distribution with  n 2−   degrees of freedom  
 
Example 
Air quality Index (AQI) is calculated hourly for a certain area (town).  The 
SO2 content and corresponding AQI given in the following table for 9 hours.  
Establish a linear relationship between the two variables.  

SO2 
3/ mgµ  Air quality 

index.  
34 
39 
30 
33 
36 
38 
45 
41 
48 

59 
69 
50 
56 
64 
66 
77 
73 
83 
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Table of predicted values and residuals  
 

Y X Ŷ              YY ˆ−  
34 
39 
30 
33 
36 
38 
45 
41 
48 

59 
69 
50 
56 
64 
66 
77 
73 
83 

34.20117 
39.68442 
29.26624 
32.55619 
36.9428 
38.03945 
44.07103 
41.87773 
47.36098 

-0.20117 
-0.68442 
0.733765 
0.44381 
-0.9428 
-0.03945 
0.92897 
-0.87773 
0.639016 

 

Sl. 
No. 

Y X XY X 2 Y2 

1 
2 
3 
4 
5 
6 
7 
8 
9 

34 
39 
30 
33 
36 
38 
45 
41 
48 

59 
69 
50 
56 
64 
66 
77 
73 
83 

2006 
2691 
1500 
1848 
2304 
2508 
3465 
2993 
3984 

3481 
4761 
2500 
3136 
4096 
4356 
5929 
5329 
6889 

1156 
1521 
900 
1089 
1296 
1444 
2025 
1681 
2304 

 344 597 23299 40477 13416 
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                   s2   =    estimate of  
29

)ˆ( 2
2

−
−

= ∑ YY
σ  

                                                         5966.0
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Total sum of squares (TSS)  
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Sum of squares due to residual  
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Sum of square due to regression  
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ANOVA TABLE 
 

Source of 
variation 

SS d.f.  MS F – ratio 

Regression 
Residual 

263.3791 
4.176433 

1 
7 

263.3791 
0.5966 

441.4422 

Total 267.5556 9   
 

             =2R coefficient of determination  

                    =   
556.267

3791.263.. =
squaresofsumTotal

regressiontodueSS     =    .98439. 

This suggests that 98.439% of the variation in Y is due to the linear 
relationship.   

Standard error of  026097.0
876

5966.0

)( 2
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i XX
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Standard error of b0   75.1
8769

5966.040477
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95%   confidence interval for  1β   is given : 
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i
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tb α  

        =    0.548326   +   2.365  ×  0.026097 
        =    0.548326   ±   0.610019 
 
 
Multiple linear Regression 
 
In most regression analysis problems, more than one independent variables 
are needed.  For example the demand for the product may depend on price of 
the product, the disposable income and price of the substitute product.  In 
such a case, three independent variables will be needed.  The model with k 
independent variables   is given by   

∈+++++= kk XXXY ββββ K22110  

The unknown parameters kββββ ,,, 210   are called the regression coefficient.  
∈ is the error component with 0)( =∈E and 2)( σ=∈V . 
The method of least square is used for estimating the parameters.  In this 
case we will have 1+k  normal equations to solve.  We generally use a 
statistical computer package for solving the multiple regression problem.   
We can also use such model for fitting polynomial models.  Consider the 
quadratic model  

εβββ +++= 2
210 XXY  

We can redefine the variables as X1 = X and X2 = X2 and get 
εβββ +++= 22110 XXY  and solve it as a multiple regression problem.  If 

we let Ŷ  denote the predicted value of Y , the estimate of error variance 

)( 2σ  is given by 
1
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 where k is the number of independent 

variables.  It has 1−− kn  degrees of freedom.  In this case, we measure the 
strength of the relationship in terms of the multiple correlation coefficient 
(R) or the coefficient of multiple determination (R2).  (R2) gives the fraction 
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of the variation in Y that is explained by multiple regression.  R2 is 
computed as follows  
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Example  The following table gives the data on Air Quality Index (Y)  and 
corresponding carton monoxide in  mg / m3 (X1)  and NO2 in 3/ mgµ  (X2).  
 

Y  1X  2X  Ŷ  
38 
40 
85 
59 
40 
60 
68 
53 
31 
35 
42 
59 
18 
34 
29 
42 

1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
3 
4 

5 
5 
5 
5 
10 
10 
10 
10 
15 
15 
15 
15 
20 
20 
20 
20 

47.2375 
55.0625 
62.8875 
70.7125 
38.4625 
46.2875 
54.1125 
61.9375 
29.6875 
37.5125 
45.3375 
53.1625 
20.9125 
28.7375 
36.5625 
44.3875 

 

(a) Calculate the least-square equation to predict the AQI from SO2 and 
NO2. 

(b) Predict AQI if SO2 is 3 and NO2 is 6. 

We assume that: εβββ +++= 22110 XXY  
To estimate the parameters 10 , ββ   and 2β , we use the software package 
Excel (MS Office)  
It gives the following output: 
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   Multiple correlation coefficient (R ) = 0.8001194 coefficient of 
multiple determination (R2) = 0.640191 

 
 
 
 
 

Anova Table  
 

Source of 
variance 

S.S. d.f M.S      F 

Regression 
Residual 

2764.63 
1553.81 

2 
13 

1382.3125 
119.52404 

Total 4318.44 15  
 

21 755.1825.71875.48ˆ XXY −+=  
Predicted value of  Y  for 31 =X  and  62 =X  

1325.616755.13825.71875.48ˆ =×−×+=Y  
 
Activity A 
Distinguish between the mathematical relationship and the statistical 
relationship  
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________ 
 
Activity B 
Identify at least three independent variable to predict the weight of an 
individual and write down the multiple regression model.  
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________ 
 
Activity C     Specify the type of relationship that is expected between fuel 
consumption of a car and its speed.  Write down the model and suggest how 
you can estimate the parameters. 
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________ 
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The following data pertain to the demand for a product in thousand of units 
and price charged in rupees in eight different locations 
  

Price Demand 
14 
12 
15 
13 
18 
15 
9 

150 
180 
112 
140 
86 
124 
223 

 
a) Obtain the line of best fit.  
b) Determine the coefficient of correlation  
c) Interpret your results 
d) Predict the demand if the price is Rs. 10. 

 



 82

 
CHAPTER – 10 

 
INTRODUCTION TO DESIGN OF EXPERIMENTS 

 
An experiment is the planning and collection of measurements or 
observations according to a prearranged plan under controlled conditions for 
the purpose of obtaining factual evidence supporting or not supporting a 
stated theory or hypothesis. 
 
In a statistically designed experiment the layout for conducting the 
individual trials is decided on statistical basis to facilitate subsequent 
analysis. 
 
Role of Statistically designed experiments: 

 
The main reason for designing an experiment statistically is to obtain 
unambiguous results at a minimum cost. Obtaining valid results from test 
programme calls for sound statistical design.  In fact, a proper experimental 
design is more important than sophisticated statistical analysis.  Results of a 
well planned experiment are often evident from simple graphical analysis.  
However, the world's best statistical analysis cannot rescue a poorly planned 
experimental programme. 
 
The need to learn about interaction among variables and to measure 
experimental error are some of the added reasons for statistically designing 
experiments.  The designing of an experiment is essentially the 
determination of  the pattern of observations to be collected.  A good 
experimental design is one that answers efficiently and unambiguously those 
questions which it is intended to resolve and furnishes the required 
information with a minimum of experimental effort.  To do this, the problem 
must first be posed as succinctly as possible; as also a list of questions to be 
answered by the experiment must be correctly formulated.  Any experiment 
must be set up to answer a specific question or questions.  Precise 
information of the question ( or questions) to be answered enables the 
experimenter to state his hypothesis more effectively.  The major and minor 
variables which are supposed to have influence on the process have to be 
identified and the ranges within which these are to be tested will have to be 
determined.  It is also to be ascertained before the commencement of the 
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experiment whether the factors are independent of functions of other factors.  
The experimenter should also know before hand what extraneous or 
disturbing factors must be controlled balanced or minimized and the kind of 
control that is desirable.  To obtain the best and most economical design for 
an experiment some prior estimate of the experimental error would be 
required and that must be estimated.  The experimenter must also set a clear 
goal as to what improvements are acceptable.  In other words to be of 
technical and practical importance, he should specify the acceptable degree 
of difference between the effects and consequences.   He should also set 
failure risks and consequences. For instance, the acceptable risks of failing 
to find an improvement of size noted above and the risk of claiming an 
improvement, when none exists, must be specified before hand.  When the 
experimenter has to  deal with effects which are large compared with 
random errors, intuitive judgement may be satisfactory but when the errors 
are  appreciable such a procedure may be misleading.  Apparent effects, 
attributed by the experimenter to such factors as he has varied may in reality 
arise solely through the accidental fluctuations due to the errors.  It is 
difficult to decide whether a particular result is genuine or due to error.  
Statistical methods alone in such situations, offer sound and logical means of 
treatment of data and there can be no alternative to rigid statistical tests.  
These methods should therefore be regarded as part of the technique which 
industrial scientists should learn in order to deal with their problems 
effectively. Statistical tests of significance are often required to establish the 
significance and extent of each of the regulating variable with the lowest 
number of trials.  In such tests it is usual to postulate that the effect sought 
does not exist, and to see whether on this hypothesis the observed difference 
can be attributed to chance.    
 
In summary, planned experimentation on Statistical basis is necessary under 
the following situations: 
 

i. Even with strict adherence to the process specification 
evolved over a period of time or borrowed from foreign 
collaboration, the product quality or productivity remain 
unsatisfactory. 

ii. To confirm the desired results for an alternative 
design/process assembly methods with minimum data 
collection. 

iii. To distinguish between critical factors (which need to be 
controlled within narrow limit) and non-critical factors 
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(which do not require to be closely controlled) to prevent or 
minimize the occurrence of defective product. 

iv. To determine the optimum process conditions. 
v. To locate source of variability. 
vi. To correlate process variables with product characteristics 
vii. To compare different products, processes, machines, 

materials and  methods. 
viii. To evaluate process capability. 
ix. To test different hypothesis and theories. 

 
Advantages of Statistically Designed Experiments: 

1. Evaluate the experimental error. 
2. Isolate the effect of factors in a quantitative manner. 
3. Evaluate the interrelationship or interaction between factors. 
4. Reduce uncertainty from conclusions. 
5. Extract maximum information from given data. 
6. Predict the extent of improvement possible over the existing 

performance. 
7. Obtain answers to questions with optimum cost at known risks. 

 
BASIC PRINCIPLES OF EXPERIMENTATION: 
 
Any experiment is required to establish or disprove some theory formulated 
about a process.  Verification of the theory cannot be absolute and if only it 
can be shown that the observations are compatible with the theory within 
reasonable limits of error to which the observations are subjected, we can 
assume that the hypothesis made are correct. 
 
 
Experimental Error: It is well known that the results of no two 
experiments will be in complete agreement despite every effort to maintain 
the same conditions.  This is due to a large number of factors beyond 
economic control.  These differences known as experimental errors 
introduce a degree of uncertainty into any conclusions that may be drawn 
from the results of the experiment. The experimental errors can be kept 
within check by following three cardinal principles of experimentation . 
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Randomisation, Replication and Local Control: 
 
Randomisation: It consists of scheduling the experiments with the different 
treatments in a random manner. For example, if two methods of processing 
are to be compared and two machines are available for the trials, the 
comparisons may be biased by machine differences, if any.  This bias is 
removed by allocating machines to the methods randomly, thus giving 
validity to the conclusions drawn on the basis of the results.  Randomisation 
is described as an insurance against extraneous factors. It is to balance the 
effects of unknown variations in materials, equipments, time etc over which 
we have no control, to prevent any factor being unduly favoured or 
handicapped  . Randomisation assures validity of statistical tests.  Random 
Number Tables can be used for this purpose.  Treatments and experimental 
units are numbered and then allotment of one to other is made using Random 
Number tables. 
 
Replication:  It is repetition of experiments. The replication of observations 
helps in estimating the experimental error.  This in turn aids in deciding 
whether the observed differences in responses are due to the treatment effect 
or due to chance.  Also such replication increases the sensitivity  of the 
experiment i.e., the power of detecting true differences between treatments.  
Number of replications will depend on the magnitude of experimental error 
and real effect of the factors, desired to be detected. 
 
Local Control or Blocking:  To obtain maximum sensitivity it is necessary 
that different trials are subjected to the same background conditions to the 
extent feasible.  In practice, it may be difficult to ensure such uniformity due 
to natural variability of material, environmental  conditions etc.  However, it 
may be possible to split up a set of treatment within  small groups where 
such variations are less.  This is known as Local Control.  One method of 
introducing Local Control is to see that all trials are repeated the same 
number of times under different conditions.  This is known as Balancing.  It 
helps in taking control of heterogeneous experimental conditions. Thus local 
control  is the technique of balancing the effect of known disturbing factors 
and thereby reducing the error.  It ensures uniformity in the background 
conditions of comparison by isolating known disturbing factors.  Local 
control is ensured by dividing the experimental units into smaller groups, 
within which the variations are likely to be less than that of the set as a 
whole.  Local control makes an experiment more sensitive, thus avoiding 
need for a large number of repetitions or replications. 



 86

 
TERMINOLOGY 
 
FACTOR:  A variable or an attribute which influences or is suspected of 
influencing the characteristics or response being investigated e.g., speed, 
feed, temperature, operator, material etc. 
 
Types of Factors: Qualitative and Quantitative 
 
Qualitative Factors: The level of qualitative factors are limited in number 
and have no intrinsic order for example operators, machine, type of material 
etc. 
 
Quantitative Factor: Is the one that can take continuum of possible values 
e.g., temperature, speed 
 
LEVEL:  The values of  a factor being examined in an experiment for 
example, three levels of temperature may be:  

Level 1:      8000 C 
Level 2:      8500C 
Level 3:      9000C 

The levels may be chosen at fixed values or they may  be chosen from all 
possible levels by a random process.  Unless otherwise mentioned, we shall 
consider only fixed levels. 
 
TREATMENT:  One set of combination of levels (one from each factor) 
employed in a given experimental trial e.g., an experiment conducted using 
temperature 8000C.  Furnace F1 and operator B would constitute one 
treatment combination.  To investigate the effect of different factors we 
conduct trials with different treatments. 
 
EXPERIMENTAL UNIT:  Basic units subjected to trial.  The experimental 
units are allocated to different treatment combinations to facilitate 
conducting trials with different treatments that is material, equipment and  
other facilities provided for conducting each trial is an experimental unit. 
 
RESPONSE: Numerical (or attribute) result of a trial with given treatment 
e.g., output/yield per shift/day, dimension, strength, hardness, 
success/failure, defect rate, rejection rate etc., 
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EFFECT: Change in response due to changes in levels of the factors. 
 
MAIN EFFECT: Estimate of the effect of a single  factor obtained 
independently of the other factors. 
 
INTERACTION:  If the effect of one factor is not the same at different 
levels of another factor, interaction between the two factors exist. 
 
EXPERIMENTAL ERROR: It is the variation in response caused by 
conditions not controlled in experiment due to either ignorance or inability 
when the same treatment is repeated. 
 
 
STATISTICAL APPROACH TO EXPERIMENTATION 

 
Statistical approach to designing and analyzing an experiment requires that 
the experimenter must have a clear idea in advance of what needs to be 
studied , what and  how  the data is to be collected and type of analysis to be 
done.  This calls for a  detailed planning of the experimental study process.  
The various steps involved in designing and conducting experiment are 
given below: 
 

1.   Defining Purpose and Scope: It is important that we develop a clear 
and a specific statement of the problem to be studied.  It must be 
accepted by the team members. It is necessary to list all objectives of 
the experiment including hypothesis to be tested and questions to be 
answered.  The scope of the experiment in terms of products, markets, 
customers, processes etc to be covered must also be clearly identified 
and stated.  An unambiguous statement of the problem often helps in 
better understanding of the process and arriving at the final solution. 

 
2. Process Analysis: The purpose of the process analysis is to study the 

related processes, inputs, outputs and  measurement involved to have 
a clear understanding of the process functioning and control 
mechanisms used.  Considerations should also be given to customer 
feedback and complaints received.  It helps in gathering all 
information about the systems relevant to designing of experiment.  
Use of process flow chart is often made for carrying out process 
analysis.  At this stage the experimenter will have rediscovered which 
factors are important and worth investigating.  It also provides  some 
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understanding of which responses need to be considered in the 
objective of the study and whether the runs of the process need to be 
grouped or not. 

 
3. Choosing Factors to Study: Here, we must decide on the factors of 

investigation.  Making a cause and effect or fish bone diagram of the 
problem will help identify possible factors.  In the initial study, we 
wish to include as many factors in the design as possible.  Such initial 
studies are called screening experiments.  Screening experiments help 
in the elimination of many factors from further consideration because 
of their minimal effect on the response variables.  We use the factors 
which various studies or experiences have shown to be influential.  
Often we consider more levels of a  smaller number of factors to 
better characterize the relationship between the responses and the 
remaining factors.   

 
After having selected the factors to be studied, we fix the range within 
which each factor can be experimented.  The factors in an experiment 
may be either quantitative or qualitative.  In case of quantitative factors, 
we must consider how these factors are to be controlled at the designed 
values and measured.  We must also fix the number of levels or values of 
the factors to be used in the experiment.  The levels may be chosen 
specially or selected at random from the set of all possible factor levels.  
In case of linear  effect of a factor, two levels of a factor are adequate.  If 
we wish to study quadratic or non linear effect of a factor, we require 
minimum three levels of a factor. 
 

4. Choosing the Response: Response(s) is the observed system output in an 
experiment or the dependent variable(s) of the experiment.  Response 
selected must be relevant to the objective of the study.  Taken together 
responses represent all the aspects of quality, productivity and performance 
we wish to study.  Response of an experiment could be measured on : 
 
Continuous scale: It should also be decided how each response is to be 
measured, the type of instrument to be used, accuracy and least count of the 
instrument needed.  The capability of the measurement process needs to be 
assessed. 
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OR 
Binary: The response is classified as good or bad. Binary response 
drastically reduces the power of the experimental design to detect the effect 
of change. 
OR 
Subjective Rating: Categorise the response in categories with intrinsic 
ordering of the categories.  For example response may be classified as good, 
normal, or bad. Response can also be obtained in a 10 point scale, say 1 to 
10 (bad to good). 
 
 In case of binary and subjective rating we need to standardize the inspection 
process in order to reduce and minimize inspection errors. 
 
5. Choice of Experimental Design: In this step, we decide on the statistical 
design to be used for conducting the experiment.  The number of trials to be 
made, the composition of each trial and the number of replications needed 
for each trial.  We must also determine the order in which data will be 
collected and the method of randomization to be used. It  also involves 
writing down the statistical model and finding out what statistical methods to 
be based for carrying out data analysis. In fixing the size of the experiment, 
we must strike a balance between the statistical efficiency and cost of 
experiment. 
 
6. Conducting the experiment: This step involves conducting the 
experiment and actual data as per plan prepared in the previous steps.  It is 
important to monitor the progress of the experiment and to train and involve 
concerned persons for better conduct of the experiment.  Proper care should 
be taken while fixing levels of the factors, and taking measurements on the 
response variables.  It is important to maintain uniform environment 
conditions and not allowing  factors which do not form part of the 
experiment to vary.  All non experimental factors must be maintained at 
constant levels throughout the experiment. 
 
7. Data Analysis: Once the experiment has been conducted and data 
collected, we go into analysis of data. Statistical methods should be used for 
analyzing the data.  We  first verify the model assumption made about the 
data using appropriate techniques.  We commonly use methods  of testing of 
hypothesis, analysis of variance, regression analysis etc for analyzing data.  
Graphical methods are also frequently used and play an important role in  
analysis. 
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8. Conclusion and Recommendation: Once the data analysis is over, we 
draw conclusions about the results and factors. The statistical conclusion 
must be physically interpreted and practical significance evaluated. Based on 
this, recommendations of the findings are made.  The  use of graph and chart 
is a very effective way to make presentation of the results and conclusions to 
the management.  If necessary, further experiment may be planned. 
 
 
COMPLETELY RANDOMISED DESIGN 

 
Description: 
 
These are single factor experiments with no restriction of randomization.  
The different levels (quantitative, qualitative) of the factor are allotted at 
random to different experimental units.  The number of units for each level 
of the factor is determined from cost consideration and the power of the test. 
It is required that the experiment is performed in a random order so that 
environment in which the treatments  are used is as uniform as possible. 
Such experiments are called Completely Randomised Design 
 
When Used: 
 

i. The experimental units are homogenous, or 
ii. The pattern of heterogeneity in the experimental material is not 

known and hence it is not possible to group them into smaller 
homogenous blocks. 

 
Data Layout: Here we have k different treatments to compare and i th 
treatment is repeated ni times. Let   ijy  denote the response on the thj  

experimental unit ),,2,1( nj L=  corresponding to the thi  level 
( )ki ,,2,1 L=  of the experimental factor or treatment. The complete data for k 
treatments are as follows: 
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 Treatments  (levels) 
 
 
Observation 

kj knjnnn

kj

yyyy

yyyy

kj

L

L

L

L

L

21 21

112111

....

....

21

 

Total kj TTTT L21  

Number kj nnnn L21  

 
 
The layout of data is also known as one-way classification because only one 
factor is being investigated. 
 
Model: The statistical model describing the observations is 
 
 

iijiij njandkiforey ,,2,1,,2,1 LL ==++= τµ  

 
Where ijy  is the thj  observation on the thi  treatment, µ  is the common 

effect for the whole experiment, iτ  represents the effect of the thi  treatment 
and ije represents the random error present in the  thj observation on the 

thi treatment. 
 
 
The error ije is usually considered a normally and independently distributed 

(NID) random effect whose mean value is zero and whose variance ( )2σ  is 

the same for all levels.  µ  is always a fixed parameter, and kτττ ,,, 21 L are 
considered to be fixed parameters, if the levels of treatment are fixed.  It is 

also assumed that  ∑
=

=
k

i
i

1
0τ . 

If the k levels of treatments are chosen at random, the iτ 's are assumed NID 






 2,0 τσ .  Whether the levels are fixed or random depends upon how these 

levels are chosen in a given experiment. 
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Hypothesis and Assumptions: The analysis of a single factor completely 
randomized experiment usually consists of a one-way analysis of variance 
(ANOVA) test where the hypothesis 0:0 =iH τ  for all  i  is tested. If this 
hypothesis is not rejected, then no treatment effects exist and each 
observation ijy is made up of its population mean µ and a random error ije . 

If the null hypothesis is rejected, we shall be interested in grouping or 
ranking the iτ 's through multiple comparisons. 
 
In applying, the ANOVA techniques, the basic assumptions are : 
 

1. The process is in control i.e., it is repeatable. 
2. The distribution of population being sampled is normal. 
3. The variance of the errors within all k levels of the factors are 

homogeneous. 
 
The lack of normality in the dependent variable Y does not seriously affect 
the analysis when the number of observations per treatment is the same for 
all treatments. 
 
Rationale for Analysis of Variance: We use the following notation 
 

treatmentsallforresponseTotal

yyy

treatmentiofresponseTotalyy

k

i

k

i

n

j
iji

n

j

th
iji

i

i

=

==

==

∑ ∑ ∑

∑

= = =
⋅⋅⋅

=
⋅

1 1 1

1

 

 
It can be shown that  
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( ) ( ) ( )

( ) ( )∑ ∑ ∑

∑ ∑∑ ∑ ∑∑

= = =
⋅⋅⋅

= =
⋅

= = =
⋅⋅⋅

=
⋅⋅

−+−=

−+−=−

k

i

k

i

n

j
iijii

k

i

m

j
iij

k

i

k

i

n

j
i

n

j
ij

i

iii

yyyyn

yyyyyy

1 1 1

22

1

2

11 1 1

22

1

 
 
 

where ⋅iy  = thi  treatment mean and ⋅⋅y  = the grand mean.  This may be 

referred as the fundamental equation of analysis of variance.  It shows that 
the total sum of squares of deviation from the grand mean is equal to the 
sum of squares of deviations between treatment means and the grand mean 
plus the sum of squares of deviations within treatments i.e., 
 

SS total  = SS treatment   +  SS error 

 

Where SStotal is total sum of squares.  SS treatment is called the sum of 
squares due to treatment and SS error is called the sum of squares due to error 

(i.e, within treatment). Since ∑
=

=
k

i
Nin

1
 in all SS total   has N - 1 degrees of 

freedom.  SS treatment  has  k - 1 degrees of freedom as the experiment has k 
level of a factor or k treatments and SS error has N - k degrees of freedom.  
Each of sum of squares divided by the corresponding degrees of freedoms is 
called mean square.  Mean Square  (M.S.) due to treatment 

( ) ( )kN

SS
equalerrortodueSquareMeanand

k

SS errortreatment

−−
=

1  

Mean square due to error provides an estimate of error variance  ( )2σ . 
 
Further it can be shown that if each of the terms (sum of squares in the 
above equation  is divided by its appropriate degrees of freedom, it will yield 
two independent chi-square distributed unbiased estimates of same 2σ  when 
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0H  is true, their ratio will be distributed as F distribution with k - 1 and 

∑
=

−
k

i
i kn

1

 degrees of freedom i.e.,  

 

( ) ( ) ( )

























−−












−− ∑ ∑∑∑

= ===
⋅⋅ ⋅

k

i

k

i
i

n

j
ij

k

i
ii knyykyyn

i

i

1 11

2

1

2 //1/

 
follows ∑ −− kinkF ,1 distribution. 

The critical region is normally taken as the upper tail of the F distribution 
(Table A) rejecting 0H , if F > αF  where α  is the area above αF . 

 
ANOVA Table :  The actual computation will be much easier if we use the 
following relations. 

( )

( ) squaresofsumTotal
N

T
yyy

treatmenttoduesquaresofSum
N

T

n

T
yyn

k

i

n

j
ij

k

i

n

j
ij

k

i

k

i i

i
ii

ii

=−=−

=−=−

∑ ∑∑ ∑

∑ ∑

= == =
⋅⋅

= =
⋅⋅

1 1

2
2

1 1

2

1 1

22
2

 

where ∑
=

=
i

n

j
iji yT

1
and   knnnNandiTT +++==∑ L21  

The term 
N

T 2

 is called the Correction Factor (C.F.) 

The error SS (or within treatment SS) can be obtained by subtraction .  Then, 
the ANOVA table may be set up as follows. 
 

Source  of variance           d.f.            S.S.                 M.S.                 F 

Between Treatments         k - 1        ∑
=

−
K

i i

i

N

T

n

T

1

22

          
error

treatmenttreatment

MS

MS

k

SS

1−
 

Within treatment/Error       N - k               *                  ( )kN

SSerror

−
 

Total                            ∑∑
= =

−−
K

i

n

j
ij

i

N

T
yN

1 1

2

1  
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* obtained by subtraction 
 
 
Paired Comparison of Means: 
 
When ANOVA indicates significant differences between treatment means, 
we shall be interested in making ordered groups of treatments such that they 
may be considered homogeneous within a group.  No unique best method 
exists but one useful method is Duncan's Multiple Range Test.  The steps are 
as follows: 
 

1. Arrange the treatment means in ascending order. 
 
2. Find the value of the last significant studentised range ( )fpr ,α  from  

Table - B for each p = 1, 2,……, k where α  is the significance level, p 
is the number of means lying within and including two means being 
compared and f is the number of degrees of freedom associated with 
MSE , the error mean square. 

 

3. For each p, find the least significant range as ( ) n
MSfprR E

p ,α=  

where n is the sample size for each treatment.  For unequal sample 
sizes, the least significant range should be calculated as 

( ) Ep MSfprR ,α= . 

4. Consider any subset of p adjacent sample means.  Let ⋅⋅ − ji yy denote 

the range of the means in this subgroup.  The population means iµ and 

jµ are considered to be different if  

                pji Ryy >−  for equal sample size 

or   ( ) p
ji

ji
ji R

nn

nn
yy >

+
−

2
 for unequal sample size. 

5.   If, within a subgroup, the most extreme pair of means is found to be 
not    significantly different then all means within the subgroup are 
assumed to be equal with no further testing required.  First we compare 
the largest mean with the smallest mean.  If these are found to be 
significantly different then compare the largest and the second smallest.  
These comparisons are continued until all means have been compared 
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with the largest mean.  The same process of comparison is repeated for 
the second largest mean and is continued until all possible pairs of means 
have been compared.  
 
6.Summarise the results by underlying any subset of adjacent sample 
means that are not considered to be significantly different at the chosen α  
level. 
 
7. If the sample sizes are all the same, then there is no question as to the 
validity of the groupings obtained.  However, one must be careful when 
sample sizes are unequal. In such a situation, all possible paired 
comparisons should be made. 
 

Example : Four different air-injection systems are being investigated for 
their efficiency.  It is desired to test if there is significant difference between 
them.  Five items of each system are taken and the efficiency of injection in 
each of them measured.  The results are as follows: 
 

Efficiency in System 
 

                 A        B             C                D           Total 
____________________________________________ 
                35        39           39               23 
 
                34        37           27               28 
 
                46        17           35               21 
 
                30        31           29               17 
 
                40        21           20               21  
____________________________________________ 

iT             185     135           150             110         580 
 
y               37       27            30                22         29.0 
 
∑ 2y      6997   3901        4716            2484        18098  
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Correction Factor   =  ( )
16820

20

580 22

==
N

T  

SS treatment               =  
[ ] 59016820110150135185

5

1 2222 =−+++
 

Total  SS                 = [ ] 127816820213435 222 =−+++ L  
 
The ANOVA table can now be set up as 
 

 
 

ANOVA Table 
 

Source  of variance                d.f.            S.S.                 M.S.              F 
Between systems                    3              590               196.67            4.57 
Within Systems                     16             688                 43.0                 
Total                                      19            1278 
 

29.524.3 16,301.16,3;05. == FandF  

 
There appears to be significant differences among the systems.  We now 
proceed to group the systems on the basis of their average as per the 
Duncan's Multiple Range Test Method.   
The sample means in ascending order are  

37302722
ACBD yyyy
 

For ,0.435,16,05.0 ==== EMSandnfα we get from Table - B 

( )
49.922.979.8

235.3144.3998.2,

_______________________________________________

432

pR

fpr

p

α
 

 
The results of comparisons of the treatment means is as follows 
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Treatment 
pair 

P RP Range of 
Treatment 
means 

Reject 
?ji µµ =  

A - D 4 9.49 15 Yes 
A - B 3 9.22 10 Yes 
A - C 2 8.79 7 No 

 
The first group is therefore 
 
D    B    C           A 
 
C - D     3      9.22        8      No 
 
The second grouping is 
 
D     B    C       A 
 
C - B   2   Not Needed     No 
 
So the groupings of the treatment means are 
 
First Group  :  A, C       Second Group :C, B, D 
              
 
FACTORIAL EXPERIMENTS 

 
In Industrial applications frequently we know that several factors may affect 
the characteristics in which we are interested and we wish to estimate the 
effects of each of the factors and how the effect of one factor varies over the 
level of the other factors.  For example quality of weld joints may be 
affected by type of electrode used, current voltage and gap etc.  We are often 
tempted to test each of the factors separately holding all other factors 
constant in a given experiment but with a little thought it might be clear that 
such an experiment might not give the information required.  The logical 
procedure would be to vary all factors simultaneously within the framework 
of the same experiment.  When we do so, we have what is now widely 
known as a factorial experiment. 
 
The factorial experiments are particularly useful in those situations which 
require the study of the effects of varying two or more factors.  In a full 



 99

factorial experiment all combinations of the different factor levels must be 
examined in order to elucidate the effect of each factor and their interactions. 
 
 
Advantages of a Factorial Design: 
 

1. It increases the scope of the experiment and gives information not 
only on the main factors but on their interactions also. 

 
2. The various levels of one factor constitute replications of other factors 

and increase the amount of information obtained on all factors. 
 

3. When there are no interactions, the factorial design gives the 
maximum efficiency in the estimate of the effects. 

 
4. When interactions exist, their nature being unknown,  a factorial 

design is necessary to avoid misleading conclusions. 
 

5. In the factorial design the effect of a factor is estimated at several 
levels of other factors and the conclusions hold over a wide range of 
conditions. 

 
Factor : A variable which is believed to affect the outcome or response 
of the experiment. 
 
Level :Various values of a factor examined in an experiment. 
 
Treatment Combination: A combination of levels of the factors in the 
experiment. 
 
Experimental Units : Items used in an experiment are referred as 
experimental units.  Examples are machines, patients, cars, plots, engines 
etc. 
 
Response: A response is the numerical result observed for a particular 
treatment combination. 
 
Effect : The effect of a factor is the change in response produced by a 
change in the level of the factor. 
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Main Effect :  Average effect of a factor. 
 
Interaction Effect: If the effect of one factor is different at different 
levels of the second factor then the two factors are said to interact. 
 
Experiment with all Factors At Two Levels : ( k2 Series) 
In this case each factor is at 2 levels and there being k factors in all.  
These levels may be quantitative or qualitative, such as two machines, 
two operators, the high and low level of a factor.  A complete replication 
of such a design requires  kxxx 2222 =L  observations and is called 

k2 factorial design. 
 
Notation: 
 
Let A , B , C denote the factors; the levels of A,B,C … are denoted by 
(1), a; (1), b; (1), c; ……respectively.  As a convention, the lower case 
letters a,b,c ….denote the higher level of the factors.  The lower level is 
signified by the absence of the corresponding letter.  Thus the treatment 
combination bc, in a 32  factor experiment, represent the experiment in 
which factor A is at low level and factor B and C are at high level.  The 
treatment combination which consists of low level of all factors is 
represented by (1).  We shall extend this notation by letting (1) , (a), (b), 
(ab), (c) ,… be the treatment total corresponding to experimental 
conditions (1), a, ab, c, respectively. 
 
 
Main effects and interactions : ( 22  Design) 
 
Consider an experiment involving two factors:  Reaction time (A) and 
amount of catalyst (B) each at two levels - low or high.  The effect of 
these two factors on the chemical yield is to be studied.  The results are 
as follows: 

Table 1   
 

 Reaction Time (A) 
 Low                    High 

 (1)                       (a) 
 

Catalyst (B) 
Low  (1) 
High  (b) 

 40                       50 
 60                       72 
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Effect of reaction time at low level of catalyst (B)  = 50  -  40    =   10 
 
Effect of reaction time (A) at high level of catalyst (B)  = 72  -  60  =  12 
 

Main effect of reaction time, 11
2

1210 =+=A  

 
Alternatively, it can be thought as difference between the average response 
at high level of A and the average response at the low level of A. 
 

Main effect of A = 11
2

6040

2

7250 =+−+
 

 
That is, increasing reaction time (A)from low level to high level causes an 
increase  of 11 units in the yield.  Similarly   
 

Main effect of B   =     21
2

5040

2

7260 =+−+
 

 
In some experiments, we may find that the difference in response between 
the levels of one factor is not the same at all levels of the other factors.  
When this occurs, there is interaction between the factors.  For example 
consider the response data in the Table Shown below: 

Table 2 
      

 Reaction Time (A) 
 Low                    High 

 (1)                       (a) 
 

Catalyst (B) 
Low  (1) 
High  (b) 

 40                       60 
 70                       32 

 
 

Effect of factor A at low level of B  = 60   -    40 =      20 
Effect of factor A at high level of B =  32  -    70  =  -  38 
 
Since the effect of A depends on the level chosen for factor B, we say that 
there is interaction between A and B.  These ideas may be illustrated 
graphically. 
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         Factorial Effect Without Interaction 
 
 R 
              e  70   B2 
              s   
    p 60  
              o  
              n  B1 
              s  40  
              e      
                  30 
 
  A1                  A2 
 Factor A 
 
                      Factorial Effect with Interaction 
 
           R    70 
            e      
            s    60 B1 

  p     
            o   50 
            n    40 
            s 
            e    30 B2 
 
 
 A1       A2 
 Factor A 
 
It is often convenient to write down the treatment combination in the order 
(1) , a, b, ab.  This is referred to as standard order. 
Main  Effects and Interactions expressed in terms of treatment total for 22 
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Factorial                                                    Divisor  
Effect          (1)     (a)        (b)     (ab) 
_______________________________________ 

M             +       +           +        +                4r 
 

A              -       +           -         +                2r 
 

B              -       -            +        +                2r 
 

AB           +      -            -         +                2r 
 
 

Where r is the number of replication.  Sum of Squares for any effect = 
r

T

4

2

 

where T is factorial effect total. 
 
 
Example: Consider the experimental data given in table I 
 

    

( ) ( ) ( ) ( )

11
2

60407250
2

1

=−−+=

−−+=
r

baba
AeffectMain

 

 

Main effect of    B  ( ) ( ) ( ) ( )

21
2

40507260

2

1

=−−+=

−−+=
r

aabb  

 

    

( ) ( ) ( ) ( )

1
2

60507240
2

1

=−−+=

−−+=
r

baab
ABnInteractio
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Sum of squares due to main effect of A 
 

                              =   
( ) ( ) ( ) ( )[ ] ( )

4

22

4

1 22

=−−+
r

baba
= 121 

 
Sum of squares due to main effect of B 
 

                              =   
( )

4

42 2

   =  441 

Sum of squares due to AB 
 

                             =     
( )

1
4

2 2

=  

 
23 Factorial Design: 
 
Main Effects and Interactions expressed in terms of treatment totals 
 
                 
Factorial 
Effect 
________ 
M 
 
A 
 
B 
 
AB 
 
C 
 
AC 
 
BC 
 
ABC 

(1)     (a)     (b)     (ab)     (c)     (ac)     (bc)     (abc) 
 
___________________________________________ 
 +       +        +       +         +        +        +          +      
 
-         +        -       +         -          +        -           + 
 
-         -         +      +         -          -         +          + 
 
+        -         -       +         +         -         -           + 
 
-         -         -        -         +         +        +          + 
 
+        -         +       -         -          +        -           +   
 
+        +        -        -        -           -         +           + 
 
-         +        +       -        +          -         -            +              

Divisor 
 
_______ 
8r 
 
4r 
 
4r 
 
4r 
 
4r 
 
4r 
 
4r 
 
4r 
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Where r is the number of replications. Each factorial effect has same 

variance 
r

22σ . Sums of squares of any factorial effect is 
r

T

8

2

 where T is 

factorial effect total as given by the above table. 
 
Yates' Method of Computing Factorial Effects: 
 
Yates has developed a  systematic tabular method for computing factorial 
effects.  The steps in the computations are as follows: 
 

1. Arrange the treatment combination in standard order.  That is, for one 
factor we simply write (1) , a.  For two factors add b, ab derived by 
multiplying the first two by the additional letter b.  For three factors 
add c, ac, bc, abc, derived by multiplying the first four by the 
additional letter c and so on. 

2. Place the corresponding treatment totals in the next column. 
3. Derive the top half of the column (1), by adding the response in pairs 
4. Obtain the lower half of the next  (column 1) by taking the differences 

of the first member of each pair from the second in each case. 
5. Repeat the process k times until we reach column k where k is the 

number of factors involved in the experiment.  Column k gives 
factorial effect totals. 

6. Obtain the factorial effect by dividing the factorial affect by  12 −kxr  
where r is the number of replicates. 

7. Sum of squares due to factorial effects is obtained by dividing the 

squares of factorial effects total by rk2  

Example: Consider the following 32  factorial experiment, designed to 
determine the effects of certain variables on the reliability of a rotary 
stepping switch.  The factors studied were: 
 

Code      Factor                      Low Level                High Level 
___________________________________________________ 
A           Lubrication                 dry                          lubricated                                             
B           Spark suppression       no                           yes 
C           Current                       0                             0.5 amp 
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Each switch was operated continuously until a malfunction occured, and the 
number of hours of operations was recorded. 
 
The whole experiment performed twice, with following results: 
 

Hours of Operation 
 

Experimental Rep.1 Rep.2 Total 
(1) 828 797 1625 
a 997 948 1945 
b 994 949 1943 
ab 1069 1094 2163 
c 593 813 1406 
ac 773 1026 1799 
bc 748 970 1718 
abc 1202 1182 2384 

Total 7204 7779 14983 
 

 
 
 

Treatment 
Combination 

Treatment 
Total 

(1) (2) (3) Effect S.S. F -  
Ratio 

(1) 1625 3570 7676 14983 936.44   
a 1945 4106 7307 1599 199.88 159800.06 15.21 
b 1943 3205 540 1433 179.12 128343.06 12.21 
ab 2163 4102 1059 173 21.62 1870.56 0.18 
c 1406 320 536 - 369 -46.12 8510.06 0.81 
ac 1799 220 897 519 64.88 16835.06 1.60 
bc 1718 393 - 100 361 45.12 8145.06 0.75 
abc 2384 666 273 373 46.62 8695.56 0.83 

 
 
Sum of Squares due to total 

( )
9375.416251

16

214983
14446895 =−=  
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Sum of Squares due to treatment 

44.3321995.14362842
2

28725685 =−=  

 
Sum of Squares due to error = 84052.50 
 

Error Variance                      =  563.10506
8

84052 =  

 
From Table A,  F0.05,1,  8  value at 5% level of significance is given by 5.32.  
Hence  main effects of factor A and B have significant effect and remaining 
effects are insignificant.   
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CHAPTER – 11  
 

ENVIRONMENTAL SAMPLING 
 

This chapter discusses means of obtaining data for environmental studies. 
Either the data will come from a planned experiment in the lab or from 
sampling done in the field. This chapter discusses several methodologies for 
obtaining data in a scientifically valid way via sampling. 
 
One of the key points to understand is that a valid sampling plan is needed in 
order to obtain useful data. If the scientist simply goes out into the field and 
picks sites to sample with no plan ahead of time, then biases and other 
problems can lead to poor or worthless data. 
 
Example: Estimate the number of trees in a forest with a particular disease. 
How can we do this?  One idea is to divide the forest into plots of size 1 acre 
say and then obtain a random sample of these acres. Count the number of 
diseased trees in each sampled acre. From this sample, we can use statistical 
principals to estimate the number of trees in the forest with the disease. 
 
Some of the most well-known sampling designs used in practice and 
discussed here are as follows: 
 

• Simple Random Sampling 
• Stratified Random Sampling 
• Systematic Sampling 
• Double Sampling 
• Multistage Sampling 
 
 

Introduction 
 
First, we introduce some terminology and basic ideas. 
 
Census: This occurs when one samples the entire population of interest. 
The United States government tries to do this every 10 years. However, in 
practical problems, a true census is almost never possible.  
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In most practical problems, instead of obtaining a census, a sample is 
obtained by observing the population of interest, hopefully without 
disturbing the population.  The sample will generally be a very tiny fraction 
of the whole population. 
 
One must of course determine the population of interest - this is not always 
an easy problem. Also, the variable(s) of interest need to be decided upon. 
 
Element : an object on which a measurement is taken. 
 
Sampling Units : non-overlapping (usually) collections of elements from 
the population. 
 
In some situations, it is easy to determine the sampling units (households, 
hospitals, etc.) and in others there may not be well-defined sampling units 
(acre plots in a forest for example). 
 
Example. Suppose we want to determine the concentration of a chemical in 
the soil at a site of interest. One way to do this is to subdivide the region into 
a grid. The sampling units then consist of the points making up the grid. The 
obvious question then becomes - how to determine grid size. One can think 
of the actual chemical concentration in the soil at the site varying over 
continuous spatial coordinates. Any grid that is used will provide a discrete 
approximation to the true soil contamination. Therefore, the finer the grid, 
the better the approximation to the truth. 
 
Frame: A list of the sampling units. 
 
Sample: A collection of sampling units from the frame. 
 
Notation: 
 

N Number of Units in the Population 
n Sample size (number of units sampled) 
y Variable of interest. 
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Two Types of Errors. 
 

• Sampling Errors - these result from the fact that we generally do not 
sample the entire population. For example, the sample mean will not 
equal the population mean. This statistical error is fine and expected. 
Statistical theory can be used to ascertain the degree of this error by 
way of standard error estimates. 

 
• Non-Sampling Errors - this is a catchall phrase that corresponds to all 

errors other than sampling errors such as non-response and clerical 
errors. Sampling errors cannot be avoided (unless a census is taken). 
However, every effort should be made to avoid non-sampling errors 
by properly training those who do the sampling and carefully entering 
the data into a database etc. 

 
 

Simple Random Sampling (SRS) 
One of the simplest sampling designs available is the simple random sample. 
Simple Random Sample : is the design where each subset of n units selected 
from the population of size N has the same chance (i.e. probability) of being 
selected.  
 
Note: It is possible to have a sampling plan where each of the possible 
samples considered have the same probability of selection but the sampling 
plan is not a SRS. 
 
Example: Suppose the frame for the population consists of sampling units 
labeled A, B, C, and D. Thus, N = 4 and we wish to obtain a sample of size n 
= 2. Then there are 6 possible random samples of size 2: 
 
AB, AC, AD, BC, BD, CD 
 
A simple random sample then requires that each of these 6 possible samples 
have an equal chance of being selected. In other words, the probability of 
obtaining anyone of these 6 samples is 1/6. 
 
Now, if we only considered two possible samples: AB or CD, each with 
probability 1/2, then each sampling unit has a probability of 1/2 of being 
selected. But this is not a simple random sample. 
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Therefore, a simple random sample guarantees that each sampling unit has 
the same chance of being selected. On the other hand, a sampling plan where 
each unit has the same chance of being selected is not necessarily a simple 
random sample. 
 
Question: How do we obtain a simple random sample? The answer is easy – 
simply label all the sampling units in the population as 1, 2,…,N and then 
pick at random from this list a set of n numbers. This sampling is generally 
done without replacement. This is akin to putting the numbers 1 through N 
on a slip of paper, putting them in a hat and then random picking n slips of 
paper from the hat. Of course, actually writing numbers on a slip of paper 
and picking from a hat is quite tedious, especially if N is large. Instead, what 
is done in practice is to have a statistical or mathematical software package 
generate a random sample automatically. Many books make use of a table of 
random digits but these tables are rather archaic and it is suggested to simply 
use a computer for the task of choosing random samples. 
 
 
Estimating the Population Mean 
 
Let 
 

 
 
denote the population mean and variance respectively. These population 
parameters are estimated by 

 
 
the sample mean and variance respectively. Using combinatorial counting 
techniques, it can be shown that the sample mean y  is unbiased for µ . That 
is, the average value of y  over all possible samples of size n is exactly equal 
to µ . Additionally, the sample variance S2  is unbiased for 2σ : 
 
Furthermore, using counting techniques, it also follows that 
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The factor (1-n/N) is called the finite population correction factor which is 
approximately equal to 1 when n is a tiny fraction of N. The square-root of 
the variance of y  is the Standard error of the sample mean. This is usually 
estimated by Estimated Standard Error of the mean:    

 
Example: Consider two populations of sizes N1 = 1,000,000 and N2 = 1000. 
Suppose the variance of a variable y is the same for both populations. What 
will give a more accurate estimate of the mean of the population: a SRS of 
size 1000 from the first population or a SRS of size 30 from the second 
population? In the first case, 1000 out of a million is 1/1000th of the 
population. In the second case, 30/1000 is 3% of the population. 
Surprisingly, the sample from the larger population is more accurate.  
 
Confidence Intervals. A ( ) %1001 α−  confidence interval for the population 
mean can be formed using the following formula: 
 

 
where ( )1,2/ −nt α  is the 2/α  critical value of the t-distribution on n-1 degrees of 

freedom.   This confidence interval is justified by applying a finite 
population version of the central limit theorem to the sample mean obtained 
from random sampling. 
 
 
Estimating a Population Total 
 
Often, interest lies in estimating the population total, call it Ty. For instance, 
in the diseased tree example, one may be interested in knowing how many 
trees have the disease. If the sampling unit is a square acre and the forest has 
N = 1000 acres, then µµ 1000== NTy Since µ  is estimated by y , we can 

estimate the population total by  
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and the variance of this estimator is 

 
 

Confidence Interval for Population Total. A ( ) %1001 α−  confidence 
interval for the population total yT  is given by 

 

 
 
Sample Size Requirements. 
 
When using a confidence interval to estimate µ  or yT , the total, we may 
require that our estimate lies within d units from the true population 
parameter. How large a sample size is required so that the half-width of the 
confidence interval is d? The following two formulas give the (approximate) 
sample size required for the population mean and total: 
 
 
 

For the mean   

 
 

and  
 
 

For the total 

 
where 2/αz  is the standard normal critical value (for instance, if α  = 0.05, 
the 025.0z  = 1.96). These two formulas are easily derived algebraically solving 
for n in the confidence interval formulas. 
 
Note that these formulas require that we plug a value in for 2σ  which is 
unknown in practice. To overcome this problem, one can use an estimate of 

2σ  from a previous study or a pilot study. Alternatively, one can use a 
reasonable range of values for the variable of interest to get an estimate of 

≈σσ :2  Range/6. 
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Example. Suppose a study is done to estimate the number of ash trees in a 
state forest consisting of N = 3000 acres. A sample of n = 100 one-acre plots 
are selected at random and the number of ash trees per selected acre are 
counted. Suppose the average number of trees per acre was found to be y  = 
5.6 with standard deviation s = 3.2. Find a 95% confidence interval for the 
total number of ash trees in the state forest.  
 
The estimated total l is ( )6.53000== yNt y = 16800 ash trees in the forest. The 

95% confidence interval is 

 
 
A Note of Caution. The confidence interval formulas given above for the 
mean and total will be approximately valid if the sampling distribution of the 
sample mean and total are approximately normal. However, the approximate 
normality may not hold if the sample size is too small and/or if the 
distribution of the variable is strongly skewed. To illustrate the problem, 
consider the following illustration. Suppose a survey is to be conducted to 
estimate the total number of students in Ohio public schools suffering from 
asthma. Let us take each county as a sampling unit. Then N = 88 for the 
eighty eight counties in Ohio.   
 
For the sake of illustration, suppose we know the number of students in each 
county suffering from asthma and that the data is given in the following 
table: 
 
1 Adams 359 
2 Allen 1296 
3 Ashlan 520 
4 Ashtab 1274 
5 Athens 580 
6 Auglaize 558 
7 Belmont 638 
8 Brown 679 
9 Butler 3980 
10 Carrol 249 
11 Champaign 549 
12 Clark 1748 
13 Clermo 2083 
14 Clinton 586 

15 Columb 1221 
16 Coshocton 415 
17 Crawford 522 
18 Cuyahoga 14570 
19 Darke 637 
20 Defian 447 
21 Delaware 1448 
22 Erie 1012 
23 Fairfield 1710 
24 Fayett 373 
25 Frankl 13440 
26 Fulton 658 
27 Gallia 389 
28 Geauga 941 

29 Greene 1550 
30 Guerns 464 
31 Hamilton 8250 
32 Hancock 888 
33 Hardin 448 
34 Harris 209 
35 Henry 346 
36 Highland 601 
37 Hockin 264 
38 Holmes 380 
39 Huron 867 
40 Jackson 383 
41 Jefferson 778 
42 Knox 613 

43 Lake 2499 
44 Lawren 822 
45 Lickin 1979 
46 Logan 558 
47 Lorain 3618 
48 Lucas 4632 
49 Madison 517 
50 Mahoni 2608 
51 Marion 824 
52 Medina 2250 
53 Meigs 264 
54 Mercer 602 
55 Miami 1192 
56 Monroe 185 
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57 Montgo 5459 
58 Morgan 178 
59 Morrow 413 
60 Muskin 1206 
61 Noble 181 
62 Ottawa 436 
63 Pauldi 267 
64 Perry 440 
65 Pickaw 699 
66 Pike 406 
67 Portage 1812 

68 Preble 572 
69 Putnam 435 
70 Richla 1473 
71 Ross 893 
72 Sandus 713 
73 Scioto 849 
74 Seneca 601 
75 Shelby 684 
76 Stark 4576 
77 Summit 6205 
78 Trumbu 2556 

79 Tuscararawas 
1117 
80 Union 572 
81 VanWert 289 
82 Vinton 179 
83 Warren 2404 
84 Washington 784 
85 Wayne 1279 
86 Willia 499 
87 Wood 1363 
88 Wyando 247 

 
Figure 1 shows the actual distribution of students with asthma for the N = 88 
counties and we see a very strongly skewed distribution. The reason for the 
skewness is that most counties are rural with small populations and hence 
relatively small numbers of children with asthma. Counties encompassing 
urban areas have very large populations and hence large numbers of students 
with asthma.   

 
 
Figure 1: Actual distribution of student totals per county. Note that the 
distributionis very strongly skewed to the right. 
 
To illustrate the sampling distribution of the estimated total yt  where 
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,yNt y =  

10,000 samples of size n were obtained and for each sample, the total was 
estimated.  The histograms show the sampling distribution for yt   for sample 

sizes of n = 5, 25, and 50. The long vertical line denotes the true total of T = 
131, 260. 
 
Clearly the sampling distribution of ty, the estimated total, is not nearly 
normal for n = 5. We see a bimodal distribution which results due to the 
presence of lightly populated and heavily populated counties. 
 
Cochran (1977) gives the following rule of thumb for populations with 
positive skewness: the normal approximation will be reasonable provided 
the sample size n satisfies 

 
where G1 is the population skewness, 
 

 
For this particular example, we find 

 
which is much bigger than the entire number of sampling units (counties)! 
 
In order to get an idea of how well the 95% confidence interval procedure 
works for this data, we performed the sampling 10,000 times for various 
sample sizes and 
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computed the percentage of intervals that contained the true population total. 
If the confidence procedure works correctly, the percentage of intervals 
containing the true population total should be approximately 95%. The 
results are given in the follow table: 
Sample Size         Percentage 
    5                              70% 
   10                             74% 
   25                             83% 

50 89% 
 

The simulation indicates that the true confidence level is quite a bit lower 
than the stated confidence level of 95%. For n = 5, only 70% of the 10,000 
intervals contained the true population total. 
 
Thus, this example illustrates that for a strongly non-normal population and 
relatively small sample sizes, the sample mean (and hence estimated total) 
will not be approximately normal and the confidence interval formulas given 
above are not valid. 
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Estimating a Population Proportion 
 
Consider a situation where for each sampling unit we record a zero or a one 
indicating whether or not the sampling unit is of a particular type or not. A 
very common instance of this type of sampling is with opinion polls - do you 
or do you not support candidate X? Suppose you take a survey of plants and 
you note whether or not each plant has a particular disease. Interest in such a 
case focuses on the proportion of plants that have the disease. In this section 
we look at how to estimate the population proportion. 
 
If we obtain a sample of size n from a population of size N, and each unit in 
the population either has or does not have a particular attribute of interest 
(e.g. disease or no disease), then the number of items in the sample that have 
the attribute is a random variable having a hypergeometric distribution. If N 
is considerably larger than n, then the hypergeometric distribution is 
approximated by the binomial distribution. We omit the details of these two 
probability distributions. 
 
The data for experiments such as these looks like  ,,....,, 2,1 nyyy  where 
 

 
The population proportion is denoted by p and is given by 

 
We can estimate p using the sample proportion p̂  given by 

 
Note that in statistics, it is common to denote the estimator of a parameter 
such as p by ( )hatpp −""ˆ .  This goes for other parameters as well. 
 
Using simple random sampling, one can show that 
 

 
This variance can be estimated by replacing p by p̂  in the above formula. 
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An approximate ( )α−1 100% confidence interval for the population 
proportion is given by 

 
This confidence interval is justified by assuming that the sample proportion 
behaves like a normal random variable which follows from the central limit 
theorem. The approximation is better when the true value of p is near 1/2. If 
p is close to zero or one, the distribution of p̂  tends to be skewed quite 
strongly unless the sample size is very large. 
 
The sample size required to estimate p with confidence level ( )α−1  with 
half-width d is given by 
 

 
Note that this formula requires knowing p which is what we are trying to 
estimate!  There are a couple ways around this problem. (1) Plug in p = 1/2 
for p in the formula. This will guarantee a larger than necessary sample size. 
(2) Use a guess for p, perhaps based on a previous study.  
 
Stratified Random Sampling. 
 
Data is often expensive and time consuming to collect. Statistical ideas can 
be used to determine efficient sampling plans that will provide the same 
level of accuracy for estimating parameters with smaller sample sizes. The 
simple random sample works just fine, but we can often do better in terms of 
efficiency. There are numerous sampling designs that do a better job than 
simple random sampling. In this section we look at perhaps the most popular 
alternative to simple random sampling: Stratified Random Sampling. 
 
The idea is to partition the population into K different strata. Often the units 
within a strata will be more homogeneous. For stratified random sampling, 
one simply obtains a simple random sample in each strata. Of course, the 
problem arises as to how many observations to allocate to each strata. 
Another issue is how to define the strata in the first place. 
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There are three advantages to stratifying: 
 

1. Parameter estimation can be more precise with stratification. 
2. Sometimes stratifying reduces sampling cost, particularly if the strata 

are based on geographical considerations. 
3. We can obtain separate estimates of parameters in each of the strata 

which may be of interest in of itself. 
 
Examples. 
 

• Estimate the mean PCB level in a particular species of  fish. We could 
stratify the population of fish based on sex and also on the lakes the 
fish are living. 

• Estimate the proportion of farms in Ohio that use a particular 
pesticide. We could stratify on the basis of the size of the farm (small, 
medium, large) and/or on geographical location etc. 

 
These two examples illustrate a couple of points about stratification. 
Sometimes the units fall naturally into different stratum and sometimes they 
do not. 
 
Notation. Let  iN  denote the size of the i th  stratum for i = 1, 2, ….. K, where 
K is the number of strata. Then the overall population size is 

 
If we obtain a random of size in   from the i th stratum, we can estimate the 
mean of  the i th stratum, iy  by simply averaging the data in the i th stratum. 
The estimated variance of iy  is 
 

 
where 2

is  is the sample variance at the i th stratum.  
The population mean is given by 
 

 
which can be estimated by 
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with an estimated variance given by 
 

 
The estimated standard error of ( )ss yESy ˆ=  is the square root of this 
quantity. 
The population total T = Nµ can be estimated using 

 
 
with estimated standard error 
 

 
Approximate ( )α−1 100% confidence intervals for the population mean and 
total using stratified random sampling are given by 
 

 
and 

 
Example. A survey was done to estimate the average number of invasive 
honeysuckle plants per acre in a forest. The forest is partitioned into 158 
acre plots. 1N = 86 acres of the forest are new growth and 2N = 72 acres are 
old growth. A sample of  1n = 14 acres of new growth and  2n = 12 acres of 
old growth forest were obtained yielding the following data: 
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The average number of plants per acre using the two-strata sampling is 
estimated to be: 
 

 
 
The standard error of this estimate is given by 
 

 
 
Thus, with 95% confidence, we estimate that the average number of 
honeysuckle per acre in the forest is 
 

 
It is interesting to note what would have happened if we had ignored the 
stratification and simply treated this as a simple random sample of size n = 

21 nn + = 14+12 = 26.  The sample mean of all n = 26 acres is y = 123.12 
which is very close to the estimated mean found using the stratification 
formulas. The standard deviation for the n = 26 measurements is s = 88.100. 
The standard error of the mean using the simple random sampling formula is 

 
Thus, using a stratified sampling plan led to a much smaller standard error of 
the mean (10.635 compared to 15.792) than if we had just treated the data as 
a simple random sample. That is, the stratified design leads to a much more 
precise estimator of the mean. In addition, the stratification design allows us 
to obtain separate estimates of honeysuckle abundance in new and old 
growth parts of the forest. 
 
Post-Stratification 
 
Sometimes the stratum to which a unit belongs is unknown until after the 
data is collected. For example, values such as age or sex which could be 
used to form stratum, but these values may not be known until individual 
units are sampled. The idea of post-stratification is to take a simple random 
sample first and then stratify the observations into strata after. Once this is 
done, the data can be treated as if it were a stratified random sample. One 
difference however is that in a post-stratification setting, the sample sizes at 
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each stratum are not fixed ahead of time but are instead random quantities. 
This will cause a slight increase in the variability of the estimated mean (or 
total). 
 
 
Allocation in Stratified Random Sampling 
 
If a stratified sample of size n is to be obtained, the question arises as to how 
to allocate the sample to the different strata. In deciding the allocation, three 
factors need to be considered: 
 

1. Total number of elements in each stratum. 
2. Variability in each strata, and 
3. The cost of obtaining an observation from each stratum. 
 

Intuitively, we would expect to allocate larger sample sizes to larger stratum 
and/or stratum with high variability. Surveys are often restricted by cost, so 
the cost may need to be considered. In some situations, the cost of sampling 
units at different strata could vary for various reasons (distance, terrain, etc.). 
The optimal allocation of the total sample n to the i th stratum is to chose 

in proportional to 

 
where ic  is the cost for sampling a single unit from the i th stratum.  
Therefore, the i stratum will be allocated a larger sample size if its relative 
size or variance is big or its cost is low. If the costs are the same per stratum, 
then the optimal allocation is given by 
 

 
which is known as Neyman Allocation. 
 
A simple allocation formula is to use proportional allocation where the 
sample size allocated to each stratum is proportional to the size of the 
stratum. This will be nearly optimal if the cost and variance at each stratum 
are nearly equal. 
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Stratification for Estimating Proportions.   
 
A population proportion can be thought of as a population mean where the 
variable of interest takes only the values zero or one. Stratification can be 
used to estimate a proportion, just as it can be used to estimate a mean. The 
formula for the stratified estimate of a population proportion is given by 

 
and the estimated variance of this estimator is given by  
 

 
 
Systematic Sampling. 
 
Another sampling design that is often easy to implement is a systematic 
sample. The idea is to randomly choose a unit from the first k elements of 
the frame and then sample every kth unit thereafter. This is called a one-in-k 
systematic sample. A systematic sample is typically spread more evenly over 
the population of interest. This can be beneficial in some situations. In 
addition, a systematic sample may yield more precise estimators when the 
correlation between pairs of observations in the systematic sample is 
negative. However, if this correlation is positive, then the simple random 
sample will be more precise. We can use the same formulas for estimating 
the population mean and total as were used for a simple random sample. 
These estimators will be approximately unbiased for the population mean 
and variance. If the order of the units in the population are assumed to be 
arranged in a random order, then the variance of the sample mean from a 
systematic sample is the same of the variance from a simple random sample 
on average. In this case, the variance of y  from a systematic sample can be 
estimated using the same formula as for a simple random sample: 
( ) ( ).2 NnsnN −  
 
An alternative to estimating the variability is to consider the order of the 
observations in the systematic sample: nyyy ,....,, 21  and then note that for 

consecutive neighboring points iy  and 1−iy ,  we have ( )[ ] 22
1 2σ=− −ii yyE  

assuming that neighboring points are independent. From this, it follows that 
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can be used to estimate the variance and therefore the standard error of the 
mean y  can be estimated using 
 

 
 
If the population has some periodic variation, then the systematic sampling 
approach may lead to poor estimates. Suppose you decide to use a 
systematic sample to monitor river water and you plan on obtaining samples 
every seventh day (a 1-in-7 systematic sample). Then this sampling plan 
reduces to taking a sample of water on the same day of the week for a 
number of weeks. If a plant upstream discharges waste on a particular day of 
the week, then the systematic sample may very likely produce a poor 
estimate of a population mean. 
 
Systematic sampling can be used to estimate proportions as well as means 
and totals. 
 
Systematic sampling can be used in conjunction with stratified random 
sampling.  The idea is to stratify the population based on some criterion and 
then obtain a systematic sample within each stratum. 
 
 
Other Design Strategies 
 
There are many different sampling designs used in practice and the choice 
will often be dictated by the type of survey that is required. We have 
discussed simple random sampling, stratified random sampling and 
systematic sampling. Now we briefly discuss a few other well-known 
sampling methodologies. 
 
 
Cluster Sampling. 
 
The situation for cluster sampling is that the population consists of groups of 
units that are close in some sense (clusters). These groups are known as 
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primary units.   The idea of cluster sampling is to obtain a simple random 
sample of primary units and then to sample every unit within the cluster.   
 
For example, suppose a survey of schools in the state is to be conducted to 
study the prevalence of lead paint. One could obtain a simple random sample 
of schools throughout the state. But this could lead to high costs due to a lot 
of travel. Instead, one could treat school districts as clusters and obtain a 
simple random sample of school districts. Once an investigator is in a 
particular school district, she could sample every school in the district.   
 
A rule of thumb for determining appropriate clusters is that the number of 
elements in a cluster should be small (e.g. schools per district) relative to the 
population size and the number of clusters should be large. Note that one of 
the difficulties in sampling is obtaining a frame. Cluster sampling often 
makes this task much easier since it if often easy to compile a list of the 
primary sampling units (e.g. school districts). 
 
Cluster sampling is often less efficient than simple random sampling 
because units within a cluster often tend to be similar. Thus, if we sample 
every unit within a cluster, we are in a sense obtaining redundant 
information. However, if the cost of sampling an entire cluster is not too 
high, then cluster sampling becomes appealing for the sake of convenience. 
Note that we can increase the efficiency of cluster sampling by increasing 
the variability within clusters. That is, when deciding on how to form 
clusters, say over a spatial region, one could choose clusters that are long 
and thin as opposed to square or circular so that there will be more 
variability within each cluster. 
 
Estimation and standard error formulas for cluster sampling can be found in 
most textbooks on sampling (e.g. Scheaffer, Mendenhall, and Ott 1996). 
 
Notation. 
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The population mean µ  is estimated by 
 

 
 
This estimator is a special case of a ratio estimator which we shall introduce 
a bit later. The estimated variance of y  is given by 

 
where 

 
and 

 
the average size of a cluster for the population. Note that often in practice M 
and hence M  are unknown in which case M  can be estimated by  
 

 
 
Estimating the Population Total in Cluster Sampling. An estimate of the 
population total in cluster sampling can be obtained in much the same way it 
was obtained in simple random sampling: 

 
The estimated variance of  yt  is simply .   What is wrong with using 
this estimator of the population total? The problem is that it requires that we 
know M which is often unknown. 
 
Alternatively, if we do not know M, we could estimate the population total 
using 
 

 
where 

 
is the average of the cluster totals for the samples clusters.  The estimated 
variance of tyN  is 
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where 

 
tyN  is an unbiased estimator of the population total, but because it does not 

use the information on the cluster sizes (e.g. the mi’s), the variance of tyN  
tends to be bigger than the variance of yt . 

 
Example. Roberts et al (2004) used a cluster sampling approach to estimate 
the number of additional deaths in Iraq that resulted due to the Iraq war that 
started in 2003. From this article, it was widely reported that the number of 
Iraqi's killed from the war (so far) is 100,000. Their estimate of Iraqi deaths 
due to the war was 98,000 (not including Falluja which had a very high 
number of deaths). A 95% confidence interval for this total was given as 
(8000, 194000). 33 clusters were sampled based on Governorates and 30 
households were interviewed in each cluster. The 33 clusters were sampled 
using a systematic sampling approach. Additional details can be found in the 
article. 
 
Question: How is a cluster sample different from a stratified sample? 
 
 
Multistage Sampling 
 
Multistage sampling is similar to cluster sampling. The idea is to determine a 
set of clusters (i.e. primary units). The first stage is to obtain a simple 
random sample of these clusters. The second stage is to obtain a simple 
random sample of units from each of the selected clusters. In cluster 
sampling, one would sample every unit within the cluster. However, for 
multistage sampling, only a sample of units within the selected clusters is 
obtained. In the school lead sampling, if the number of schools in districts is 
large, then multistage sampling may be preferred over cluster sampling.  
Multistage sampling differs from stratified sampling in that only a sample of 
clusters are obtained. In stratified sampling, every cluster would be sampled. 
 
Of course, multistage sampling can be generalized to any number of stages. 
Suppose you want to survey lakes in the country. The first stage may be to 
randomly select a sample of states. In the second stage, select a sample of 
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counties from each of the selected states. Finally, sample lakes in each 
county. 
 
 
Composite sampling - mixing samples that were obtained near each other to 
save on the cost of analyzing the sample. For example, consider the problem 
of testing blood to determine the proportion of people with syphilis. Initially, 
take one drop from each blood sample, mix these drops, and test the mixture 
for syphilis. If the test is negative, then syphilis is not present in any of the 
blood samples. However, if the test is positive, then the individual samples 
need to be tested. On average, the expected number of tests using composite 
sampling is much less than the number of samples present. 
 
 
Ranked set sampling - used to save time and money for analyzing samples. 
The following example will help illustrate the procedure. 
 
 
Ranked set sampling example. The goal is to estimate the average amount 
of spray deposit on apple tree leaves. The sampling units are the leaves of 
the tree.  Accurately computing the deposit density from the spray is time 
consuming: it requires an image analysis of the leaf to obtain a total pixel 
grey-scale value which is then divided by the leaf area. Suppose a sample of 
size n = 5 is to be obtained. The basic idea of ranked set sampling is to 
obtain a random sample of five leaves and rank them from highest to lowest 
spray deposit density. Pick the leaf with the highest spray concentration and 
accurately measure this concentration. Ranked set sampling requires that the 
observations can be quickly ranked. In this example, ranking the 
observations can be done if leaves are sprayed with a fluorescent dye and 
examining them visually under ultraviolet light. Next, randomly pick five 
more leaves, rank them and then measure the spray density on the second 
highest leaf. Again, randomly pick five leaves, rank them and perform the 
measurement on the third highest leaf.   Repeat this to get the fourth and 
fifth measurements. We can think of the data in the following illustration - 
each row corresponds to five sampled leaves. In the first row, the largest 
value is denoted by ( )11x and in the second row, the second largest value is 

denoted by ( )22x ; and so on. 
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An unbiased estimator of the mean is given by the ranked set mean 
estimator: 

 
It can be shown that the ranked set sample mean is more efficient than the 
simple random sample mean, i.e. the variance of  x  is less than the variance 
of the sample mean from an ordinary simple random sample. In fact, the 
increased efficiency of ranked set sampling can be quite substantial. Of 
course if errors are likely when ranking the observations in each row above, 
then the efficiency of the ranked set sampling will decrease. 
 
 
Ratio Estimation. 
 
It is quite common that we will obtain auxiliary information on the units in 
our sample. In such cases, it makes good sense to use the information in this 
auxiliary information to improve the estimates of the parameters of interest, 
particularly if the auxiliary information provides information on the variable 
of interest.  
 
Suppose x is the variable of interest and for each unit, there is another 
(auxiliary) variable u available. If u is correlated with x, then measurements 
on u provide information on x. Typically in practice, measurements on the 
variable u will be easier and/or less expensive to obtain and then we can use 
this information to get a more precise estimator for the mean or total of x. 
For instance, suppose we want to estimate the mean number of European 
corn bore egg masses on corn stalks. It is time consuming to inspect each 
and every leaf of the plant for corn borers. We could do this on a sample of 
plants. However, it is relatively easy to count the number of leaves on each 
given stalk of corn. It seems plausible that the number of egg masses on a 
plant will be correlated with the number of leaves on the plant. 
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A common use of ratio estimation is in situations where u is an earlier 
measurement taken on the population and x represents the current 
measurement. In these situations, we can use information from the previous 
measurements to help in the estimation of the current mean or total.  
 
Suppose we obtain a sample of pairs ( )11, xu , ….. ,  ( )., nn xu    We can compute 
the means of the two variables x  and u  and form their ratio: 

 
Letting xµ and uµ denote the population means of x and u respectively, then 
we would expect that 
 

 
 

in which case 
 

 
 

Using this relationship, we can define the ratio estimator of mean xµ as 
 

 
 

and if N is the total population size, then the ratio estimator of the total τ  is 
 

 
What is the intuition behind the ratio estimator? If the estimated ratio 
remains fairly constant regardless of the sample obtained, then there will be 
little variability in the estimated ratio and hence little variability in the 
estimated mean using the ratio estimator for the mean (or total). 
 
Another way of thinking of the ratio estimator is as follows: suppose one 
obtains a sample and estimates xµ using x and for this particular sample,x  
underestimates the true meanxµ .  Then the corresponding mean of u will 
also tend to underestimate uµ  for this sample if x and u are positively 
correlated. In other words, uu /µ will be greater than one. The ratio estimator 
of xµ is 
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From this relationship, we see that the ratio estimator takes the usual 
estimator x  and scales it upwards by a factor of  uu /µ   which will help 
correct the under-estimation of x .   
 
There is a problem with the ratio estimator: it is biased. In other words, the 
ratio estimator of xµ   does not come out to xµ   on average. One can show 
that 

 
However, the variability of the ratio estimator often tends to be smaller than 
the variability of the usual estimator of x  indicating that it may still be 
preferable. 
 
An estimate of the variance of the ratio estimator ratiox  is given by the 
following formula: 
 

 
By the central limit theorem applied to the ratio estimator, ratiox  follows an 
approximate normal distribution for large sample sizes. In order to guarantee 
a good approximation, a rule of thumb in practice is to have n ≥  30 and the 
coefficient of variation 10.0/ <xx µσ .   If the coefficient of variation is large, 
then the variability of ratio estimator tends to be large as well. 
 
An approximate confidence interval for the population mean using the ratio 
estimator is 
 

 
 

 
 
An approximate confidence interval for the population total using the ratio 
estimator is given by  
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where 

 
When estimating the mean or total of a population when an auxiliary 
variable is available, one needs to decide between using the usual estimator 
x  or the ratio estimator. If the correlation between x and u is substantial, 
then it seems that using the ratio estimator should be preferred. A rough rule 
of thumb in this regard is to use the ratio estimator when the correlation 
between x and u exceeds 0.5. There is a  theoretical justification for this 
given in Cochran (1977, page 157) based on assuming the coefficient of 
variation for x and u are approximately equal. 
 
Example. A study of acid rain was undertaken by examining samples of 
water in 32 lakes in 1977. In 1976, the pH was measured in the population of 
all N = 68 lakes which gave a mean value of uµ  = 5.715 in 1976. Figure 5 
shows a scatterplot of the pH values from the sample of n = 32 lakes in 
1977. The goal is to estimate the mean pH level  xµ  for all N = 68 lakes for 
1977. The data for the n = 32 lakes are given in the following table: 

 

  

 

 
 
 
 



 135

The sample means for the n = 32 lakes are 
 

 
which gives an estimated ratio of 

 
The ratio estimator of xµ , the average pH in the 68 lakes is 

 
which is higher than the simple estimate of  x = 5.3997. Therefore, the ratio      
estimate takes the usual estimate of 5.3997 and scales it up by a factor of 

=uU /µ 5.715=5.4159 = 1.0552.  The sample correlation between pH in 1976 
and 1977 for the 32 lakes is 0.883 which indicates that the ratio estimator 
will be more efficient than the usual simple random sample estimator of the 
mean. The estimated coefficient of variation for 1976 and 1977 are 
respectively 0.1234 and 0.1244. Although the coefficient of variation for 
1977 exceeds our rule of thumb value of 0.10, it does not exceed it by much.   
 
The estimated variance for the ratio estimator can be computed as  
 

 
 
The standard error of  ratiox   is obtained by taking the square root of this 

quantity which gives ( ) .0412.00017.0ˆ ==ratioxes   A 95% confidence interval 
for xµ  is 
 

 
 

Note that if we had just used the sample mean to estimate the population 
mean (obtaining x = 5.3997), the associated standard error would be 
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which is more than twice the standard error of the ratio estimator. This 
indicates that the ratio estimator is a more efficient estimator of the 
population mean. 
 
There exist sample size formulas for estimating means and totals using a 
ratio estimator which can be found in most textbooks on sampling. Note that 
if ratio estimation is more efficient than the usual simple random sample 
estimate, then smaller sample sizes will be required for the same level of 
precision. 
 
Regression Estimation  
 
Note that the line in Figure 5 appears to go through the origin which stands 
to reason if the relationship x = ru is approximately valid. There exist other 
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examples where an auxiliary variable is available and the relationship 
between x and u is linear, but the line does not necessarily go through the 
origin. In these situations, it makes sense to utilize the information in the 
auxiliary variable using a simple linear regression relation between x and u: 
 

 
 

where 0β  and 1β   are the intercept and slope of the line and ε  is a random 
error to account for the fact that the sample points will not all lie exactly on 
a line. 
 
Let  1β̂  denote the usual least-squares estimator of the slope. Then the 
estimated regression line is given by 
 

 
Additionally, the least-squares regression line always passes through the 
mean ( )xu, .  This suggest the following least-square regression estimator of 
the mean of x, denoted Lµ̂ : 
 

 
Thus, the regression estimator takes the usual estimator x  of the mean and 
adjusts it by adding ( )uu −µβ1

ˆ . 
 

• Typically the ratio estimator is preferred over the regression estimator 
for smaller sample sizes. 

• Ratio and regression estimation can be used in conjunction with other 
types of sampling such as stratified sampling. 

 
 
Double Sampling 
 
Double sampling (also known as 2-phase sampling) is similar to ratio 
estimation in that it uses information from an auxiliary variable. For ratio 
estimation, it was assumed that the population mean uµ   was known for the 
auxiliary variable, but this may not always be the case.  
 
The basic idea of double sampling is to first take a large preliminary sample 
and measure the auxiliary variable.  It is assumed that the auxiliary variable 
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will be easy and/or inexpensive to measure and that it will be correlated with 
the  variable of interest. Then another sample (often a sub-sample of the first 
sample) is obtained where the variable x of interest is measured. 
 
Some examples of easy-to-measure auxiliary variables are  
 

• Examine aerial photographs of sampling units to get rough counts of 
trees, animals etc. 

• Published data from past surveys. 
• A quick computer search of files using a keyword for example. 
 

In order to perform a double sampling, one first obtains a preliminary 
sample of size n’  say and measures the variable u. From this preliminary 
sample, we can get an estimate of uµ  using 
 

 
Then one obtains the usual sample of size n, perhaps as a sub-sample of the 
preliminary sampled units. From this sample, we can compute the ratio as in 
a ratio sample: 

 
Then, the population total for x can be estimated using 
 

 
 
The variance for the estimated total using double sampling is more 
complicated than the variance of the ratio estimator because we have an 
extra source of variability with double sampling - namely the variability 
associated with the preliminary sample.  The estimated variance of the 
double sampling total estimator is given by 
 

 
where 
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Notice that if n’ = N, that is if the preliminary sample is of the entire 
population (i.e. a census), then the first term in this variance formula 
becomes zero and we end up with the same formula as the ratio estimator 
variance. 
 
 
Unequal Probability Sampling 
 
The sampling procedures discussed up to this point involve simple random 
sampling of sampling units in which case each unit has the same chance of 
being selected for the sample. Even with sampling designs more complicated 
than simple random sampling, such as stratified random sampling, a simple 
random sample was obtained in each stratum. In many situations, a simple 
random sample is either not possible or not preferable. 
 
In line-intercept sampling for example, a line is more likely to intercept 
larger units than smaller units. If we divide an area into plots of sampling 
units, the plots may not all have the same size. In these cases, the probability 
of the unit to be selected into the sample will depend on the size of the unit. 
This is sometimes known as probability proportional to size estimation. 
 
Let ip  denote the probability that the i th unit will be selected. 
 
Hansen-Hurwitz Estimator: Suppose sampling is done with replacement. 
Recall that when using simple random sampling, the population total is 
estimated by yNt y = . We can rewrite this as 
 

 
If we are sampling with replacement when each unit has the same chance of 
being selected, then the probability that a unit is selected at any given draw 
is 1/N. For the Hansen-Hurwitz estimator, we simply replace the 1/N by ip  
for the i th unit: 
 

 
Horvitz-Thompson Estimator: Sampling with replacement is not done 
often in 
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practice as in the case of the Hansen-Hurwitz estimator. With the Horvitz-
Thompson estimator, the sampling can be done either with or without 
replacement. We shall consider the case when the sampling is done without 
replacement. Let iπ denote the probability the i th sampling unit is selected in 
the sample. (Note that if all units have the same chance of being selected and 
we sample without replacement, then iπ = n/N: Can you explain why?) 
The estimator of the population 
 
total is given by 
 

                                                                                                                    
The population mean can be estimated using 
 

 
assuming the n units selected are all distinct (this will not necessarily be the 
case when sampling with replacement). The variance formula for the 
Horvitz-Thompson estimator is quite complicated and involves probabilities 
of the form ijπ  which denotes the probability that units i and j are both 

selected. Recent research into simpler variance formulas that do not require 
knowing the ijπ  has been published, see for example Berger (2004). If 

sampling is done proportional to size and size of units vary, then the ijπ  will 

vary in value as well.  
 
 
Detectability 
 
In some sampling cases, the elements may be difficult to detect within the 
sampling units. This may be the case in certain wildlife populations (e.g. 
fish, birds, etc.). If one is obtaining a simple random sample from a 
population of N units, then whether or not an animal in the unit is detected 
may not be certain, but instead a probability is associated with the chance 
the animal is detected. A non-animal example could occur when soil 
samples are assessed for a particular contaminant, some of the material may 
be missed due to sparsity of the contaminant. 
 
Definition.   The probability that an object in a selected unit is observed is 
termed its detectability. 
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For the sake of discussion, we shall refer to the objects as “animals." The 
following is some notation: 
 

 
If we assume independence between observations and a constant 
detectability probability p throughout a region, then 
 

 
that is, Y , the number of animals observed follows a binomial distribution 
on τ  trials and success probability p. Therefore, the expected value of Y is 
 

 
 

which indicates that we can estimate the total number of animals by solving 
for τ and using an estimate for the mean: 
 

 
The variance of the binomial random variable Y is τ p(1- p) and thus 
 

 
 
which can be estimated by substituting τ̂  for τ  to get 
 
 

 
Notice that if the probability p of detection is small, then this variance 
becomes large.  If the area of the region of interest is A, then we can define 
the animal density as 

 
the number of animals per unit area. An estimate for the density then is 
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which has an estimated variance of 
 

 
These formulas require that we know the value of p but this is typically not 
the case in practice. 
 
The question arises as to how to estimate p. Methods such as double 
sampling, capture-recapture or line transects can be used to estimate p. One 
way to estimate p is to select n sampling units and let ix denote the number 
of animals detected in the i th unit using the standard sampling technique. 
Then do an intensive search of each of these sampling units and let iy  
denote the actual number of animals at the i th unit. Then an estimate of p is 
obtained by computing 
 

 
 

The variance of this estimator can be estimated using ideas from ratio 
estimation. 
 
If p has to be estimated, then the previous estimate of the population total τ  
can now be given as 
 

 
 

Since we now have the random p̂  in the denominator instead of a fixed p, 
the variance of the estimated total increases by an extra term. An 
approximate formula for the variance of this estimated total can be derived 
using a Taylor series approximation to the ratio 
 

 
 
In the formulas above, we have let y denote the number of animals observed 
from our sample. The value of y obtained depends on the sampling design 
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used. For instance, if a simple random sample was used, then the estimate of 
the total was found to be yN  assuming all animals could be detected. If p is 
the probability of detection, then the estimate of the total becomes 
 

 
 

We can replace p by p̂  in this formula when p needs to be estimated. The 
variance formula approximations become quite complicated in this case (e.g. 
see Thompson 1992). 
 
 
Line Transect Method 
 
In this section we give a brief introduction to some of the basic ideas of line 
transect sampling. The basic idea of the line transect method of sampling is 
for the observer to move along a selected line in the area of interest and note 
the location of animals (or plants) along the line and the distance from the 
line. The goal of the line transect method is to estimate the animal density D 
= (# of animal/unit area): Then the total number of animals can be found by 
computing 
 

 
where A is the area of the region of interest. The observer will obtain a 
random sample of line transects. Let iy  denote the number of animals 
detected along the i th transect. 
 
The Narrow Strip Method: Choose a strip of length L and let 0w denote the 
distance to the left and right of the line where the observer will observe the 
animals - 0w  is called the half-width. A simple estimate of the density along 
the strip is 
 

 
 

The narrow strip method assumes that animals anywhere in the strip are just 
as likely to be observed as anywhere else in the strip. However, a more 
realistic scenario is that the detectability decreases with the distance from the 
transect. 
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Instead of using the narrow strip method then, the data can be used to 
estimate a detectability function where the probability of detection drops off 
with the distance from the line transect. A couple popular parametric choices 
for the detectability functions are given by the exponential function and the 
half-normal function: 
 

 
where w is a parameter typically estimated using maximum likelihood and x 
is the distance from the line. Instead of specifying a parametric form for the 
detection function (e.g. exponential and half-normal), nonparametric 
detection functions can be estimated using kernel methods.  
 
For line transect sampling, more than one transect is obtained. One can 
obtain a simple random sample of transects. This is usually accomplished by 
drawing a line along one edge of the region and then selecting n points at 
random along this line.  Then the transects are perpendicular lines extending 
from this baseline into the region at the n points. Note that biases can occur 
for transects that occur near the boundary of the region (e.g. there may be 
few animals along the boundary - there are ways of dealing with this that we 
will not go into here). If the region has an irregular shape, then the lengths 

iL  of the n transects will have varying lengths and therefore the lengths are 
random variables. 
 
Instead of taking a simple random sample of transects, one could instead 
obtain a systematic sample of transects. This will help guarantee a more 
even coverage of the region.  
 
Also, transect lines can also be selected with probability proportional to the 
length of the transect. The probability proportional to length selection can be 
accomplished by selected n points at random from the entire two-
dimensional region and then select transects based on perpendicular lines 
that go through these selected points from the baseline. 
 
 
The Data Quality Objectives Process 
 
The collection of data can be time consuming and expensive. Therefore, it is 
very important to plan matters very carefully before undertaking a survey or 
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experiment.  If too small a sample size is used, then there may not be enough 
information to make the resulting statistical analysis useful. For instance, 
confidence intervals may be too wide to be of any use or a statistical test 
may yield insignificant results even if there is a real effect. On the other 
hand, one does not want to unnecessarily expend too much money and 
resources obtaining more data than what is necessary in order to make a 
decision. 
 
 
The steps of the DPO can be summarized as following: 
 

1. State the problem: describe the problem, review prior work, and 
understand important factors. 

 
2. Identify the decision: what questions need to be answered? 
 
3. Identify the inputs to the decision: determine what data is needed to 

answer questions. 
 

4. Define the boundaries of the study: time periods and spatial areas to 
which the decisions will apply. Determine when and where data is to 
be gathered.  

 
5. Develop a decision rule: define the parameter(s) of interest, specify 

action limits, 
 

6. Specify tolerable limits on decision errors: this often involves issues 
of type I and type II probabilities in hypothesis testing. 

 
7. Optimize the design for obtaining data: consider a variety of designs 

and attempt to determine which design will be the most resource-
efficient. 

 
This process may very well end up being an iterative process. Not only will 
later steps depend on the earlier steps but the later steps may make it 
necessary to rethink earlier steps as the process evolves. For instance, one 
may initially set unrealistic error bounds (type I and/or II) and then come to 
realize that these constraints would make the project go way over budget. 
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CHAPTER – 12 
 

CONTROL CHARTS 
 
 

Introduction  
 
What is a Control Chart 
 
Control Chart is a chart on which the values of the quality characteristic 
being controlled are plotted in sequence.  The chart consists of a central line 
(corresponding to the desired average level) and two statistical limit lines 
called Upper Control Limit (UCL) and Lower Control Limit (LCL) which 
indicate the limits of Natural variation (not the specified variation) for the 
sample `statistic' (like average, range, % defective, no. of defective items per 
sample, no. of defects per item etc.) being plotted. 
 
The control limits are supposed to strike a balance between two kinds of 
errors, viz., (1) looking for trouble that does not exist and (2) failing to look 
for trouble that does exit.  Neither of these kinds of errors should be unduly 
large, yet neither should be reduced to such an extent that it unduly increases 
the other. 
 
Sample constituting rational subgroup are taken at regular intervals of 
production  and suitable `statistic' computed from the sample measurements 
are plotted on the control chart.  Suitable technical action is called for 
whenever the statistic violates the control limits or some abnormal pattern is 
developed in the chart. 
 
Histogram has certain limitations.  Even if the original data were collected in 
sequence of time and the identification of time-sequence was kept for each 
observation, that information is totally lost when we make frequency 
distribution and histogram.  If there has been a gradual drift or occasional 
changes in the process level during the period of data collection, histogram 
does not reveal these aspects which might be vital inputs for necessary 
corrective action.  In such situations, we might sometimes wrongly conclude 
that the process is under statistical control.  Therefore, it is necessary that we 
examine the behaviour of the process over sequence of time wherever 
feasible.  This is done through RUN CHARTS. 
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Run Chart 
 
Run chart is a simple chart where the quality characteristic is plotted in 
sequence of time for consecutive items produced.  The chart contains the 
specification limits and also the mid-specification line where the process 
average is supposed to be centered. 
 
 
Advantages of a Run Chart 
 
� Very easy and simple to plot. 
� Needs little statistical training for interpreting the chart. 
� Provides good feedback on approximate average level and variability 

for prompt corrective action. 
 
Disadvantages of a Run Chart 
 
� One has to wait for a long time to detect a small change in average or 

variability level. 
� Objective and precise decision criteria as to when to take action and 

when not to take action are not provided.  These disadvantages are 
taken care of through CONTROL CHARTS. 

 
 
Rational Subgroup 
 
Product streams can usually be divided into homogeneous groups (or lots) 
with reference to time or other characteristics, ensuring that products in the 
group have been made under conditions of statistical control.  Rational 
subgroup is a sample which represents a homogeneous group.  Assignable 
causes, if they exist, cause variation between groups.  The objective of the 
control chart technique is to check whether the variation between groups 
measured by subgroup difference is in conformity with the variation within 
subgroup.  Appropriate statistic from these rational subgroups are plotted on 
the control chart.  Process standards are evolved after excluding those 
subgroups where assignable causes are suspected to have operated. 
 
 
 
 



 149

Control limits  
 
 The control limits are usually placed at Mean 3±  standard deviation 
standard deviation of the statistic.    The standard deviation represents the 
variability within a rational subgroup. 
 
Procedure for installing and operating control charts  
 

1. Decide on the characteristic (measurable or attribute) to be controlled. 
2. Define the groups or lots which will provide rational subgroups. 
3. Decide subgroup size.  It really depends on the amount of shift to be 

detected quickly in the process level.  For measurable characteristic, 
for shifts of as much as σ2 ,  sample size 4 or 5 is usually used 
whereas for small shifts, say σ1 ,  sample sizes 15-20 are suitable. 

4. To develop process standards obtain data for 20-25 subgroups.  
Through appropriate statistical procedure, `homogenise' the data, 
evolve process standard and calculate the standard deviation  of the 
sample statistic  to be plotted on the chart. 

5. Obtain the control limits as Average 3±  standard deviation  of the 
sample statistic. 

6. Draw the central line and the control limits on a graph, continue to 
obtain rational subgroup measurements and plot the sample statistic 
on the chart. 

7. As soon as a point violates the limits or there is `abnormal pattern' of 
points, infer that some assignable cause of variation has disturbed the 
process.  Accordingly investigate and take corrective action. 

 
 
Types of Control Charts 
 
Type of control charts depends on the nature of quality characteristic being 
controlled.  The Charts are broadly classified as Attribute and Variable. 
 
 
Control charts for attributes 
 
 These charts are used when we are interested in controlling percentage or 
proportion of occurrences of some event.  The typical example is when 
quality data are generated in the form of attribute data like `good' and `bad' 
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and the quality characteristic of concern is the `proportion defective' (p) or 
number of defectives in a sample of constant size. 
 
 In order that we are able to calculate the standard error of the statistic 
``number of defectives in a sample of constant size" we must know the long 
term pattern of variation (i.e. probability distribution) of the concerned 
statistic (a random variable) under stable process conditions producing  
proportion of defective. 
 
 The long run average ( )µ , number of defectives and the standard deviation 
( )σ of the number of defectives in a sample of size n will be  given by  
 

( )pnp

np

−=

=

1σ
µ

 

 
If the characteristic chosen is p i.e. the sample proportion defective, then the 
mean and s.d. are given by 
 

p=µ  

 

( ) npp /1−=σ  

Where n is the sample size. 
 
These results help us in calculating the control limits for the relevant 
characteristics. 
 
 
np Chart 
 
When the subgroup size (n) for inspection remains constant in each 
subgroup, we use np chart to examine the state of control with respect to 
number of defectives in each subgroup 
 
The formula for the control limits are 
 

( )ppnpnUCL −+= 13  

pnCL =  

( )ppnpnLCL −−= 13  
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when  pn  is the homogenised average number of defectives per sample of 
size n. 
 
 
C-Chart 
 
This chart is used for those characteristics which indicate only the number of 
occurrences of some rare events like occurrence of defects, breakdown, 
accidents, absenteeism,  etc. during fixed time intervals or length, area and 
volume space.  The concerned random variable follows what is known as 
POISSON DISTRIBUTION. 
 
In control chart operations the variable denoting no. of occurrence is named 
as c.  The long run average and standard deviation are given by  
 

c

c

=

=

σ
µ

 

 
 This result helps us in obtaining the control limits for the desired 
characteristic. 
 
 

RX −  Control charts 

 
In order to ensure that the production of defectives (not conforming to 
specification) is minimised, we have to exercise control over average level 
as well as variability.  For controlling the average level, the appropriate 
control chart is X  chart where the subgroup averages X are plotted in time 
sequence.  Similarly, for controlling the variability, the chart to be used is 
the Range or R-chart where the statistic plotted are the sample ranges (R). A 
sample X - R-chart is given in the next page. 
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The following data relate to CO  content in air in a particular locality.  
 

Table : Data on CO content  
 

Sample No. 1 2 3 X  R 
1 2.12 2.13 2.12 2.123 0.01 
2 2.13 2.10 2.13 2.120 0.03 
3 2.15 2.13 2.13 2.137 0.02 
4 2.10 2.12 2.14 2.120 0.04 
5 2.11 2.14 2.16 2.137 0.05 
6 2.07 2.13 2.15 2.117 0.08 
7 2.12 2.12 2.14 2.127 0.02 
8 2.10 2.12 2.15 2.123 0.05 
9 2.15 2.13 2.11 2.130 0.04 
10 2.11 2.12 2.12 2.117 0.01 

 
 
Assuming that the measurable characteristic follows Normal distribution, the 
formulae for the control limits in the X and R charts are given as follows:  
 

Table  : Formulae for Control Limits 
 

Chart for Central Line Upper Control Lower Control 
Limit 

Average  X  X  RAX 2+  RAX 2−  

Range,  R R  RD4   

 
 
 
Where  
X =  Average of the sample average . 
R = Homogenised average range 
 
  For routine operation of control chart, X  is to be replaced by target value 
A2, D3, D4 are constants depending on a subgroup size (Refer TABLE-A). 
For the given data, we have sub group size  
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n        =     3 
A2     =    1.023 
D3     =    0  
D4     =    2.574 
 
 
Homogenisation of Ranges 
 
First we shall evaluate the process standards for Range.  We shall detect the 
abnormally high ranges which are likely to have arisen due to some 
assignable cause of variation.  If no assignable cause has disturbed the 
process, the individual `range' values will all fall within the control limits for 
range. If any range value violates the limits, it is an indication that it does 
not belong to the set of remaining range values.  In such a case, we eliminate 
that `range' and reexamine the control aspect  for the remaining `ranges'.  
This procedure known as "Homogenisation of ranges" is continued till we 
are left with a set of ranges which falls within the latest revised control 
limits.  The average of the ranges remaining at last within the control limits 
is called the ``standard (homogenised) average range''(R).   
 
One note of caution.  If in the process of homogenisation more than 20 % of 
 points are to be discarded, do not use the data for evolving process 
standards for future control because such a situation indicates that the 
process is very much disturbed and so it should not be considered for 
evolving the standards. 
 
For our data 
 

R          =    0.35/10 = 0.035 
     RUCL    =    2.574 X 0.035 = 0.090 

     RLCL    =    RD3 = 0 
 
All ranges are within limits. 
 
 Incidently the long run average value of σ/R where σ  is the population 
standard deviation stabilises at a constant value denoted by 2d  which again 
depends on subgroup or sample size.  So, an estimate of standard deviation 
is provided by 2/ dR  
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For subgroup size 3, d2= 1.693  
The estimate of standard deviation = σ̂  = 0.035/1.693 = 0.027 
 
This standard deviation is a measure of variability.  
 
 
Setting Limit for Averages 
 
1. Since specification is given between 05.010.2 ±  for future control the 
target is kept at 2.10 (Lower Specification Limit + Upper Specification 
Limit/2) and control limits are calculated as  

RA2±  (homogenised) from target 
where A2= 1.023 X 0.035 = 0.036 
Upper Control Limit = 2.10 + 0.036 = 2.136 
Lower Control Limit = 2.10 - 0.036 = 2.064 
 
 After installing charts fixed number (here 3) of subgroup observations are to 
be collected and from each `rational' sub group, x  and R are  to be 
calculated and plotted on the respective charts.  Successive points can be 
joined by straight lines.  So long as the plotted points exhibit natural patterns 
of variation within the control charts, no action is called for since the process 
is in control.  But as soon as any abnormal pattern of variation is noticed, we 
must hunt for the trouble-maker and not rest till we catch the culprit. 
 
 
Natural pattern of variation in control charts 
 
 So long as the process conditions are quite stable i.e. the process is 
governed only by chance causes, the behaviour of the plotted points should 
satisfy all the following conditions: 
 

1. Most of the points are centered around the central line. 
2. A few of the points are spread out and approach the control limits. 
3. None of the points (or at most only a very rare and occasional point) 

exceeds the control limits. 
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Unnatural pattern of variation in control charts  
 
 The various indications and conclusions are presented in the following list: 
 

Table : Unnatural patterns and conclusions from control chart 
 
 

Sl.No. Pattern of points Conclusions 
1. Point violating control limits Change in level 
2. Run of points on same side of central 

line but within control limits 
- 7 Successive 
- 10 out of 11 
- 12 out of 14 
- 14 out of 17 
- 16 out of 20 

Sustained shift in level 

3. Trend of points Gradual change in level 
4. Points mostly near UCL as well as 

LCL 
Two or more 
overlapping distribution 
of characteristic under 
observation 

5. Appearance of cycles Some factor influencing 
the monitoring 
characteristic 
periodically 

6. Points too close to central line In correct rational 
subgrouping 

7. Correlation between  X  and R Charts Skewness in underlying 
distribution 
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Table-A 

 
Factors for RX −   Charts 

 
Factors for estimating s from R 

 
No. of 

Observations in 
a sample 

A2 D3 D4 For the Estimate 
from  ( )2dR  

2 1.880 0 3.268 1.128 
3 1.023 0 2.574 1.693 
4 0.729 0 2.282 2.059 
5 0.577 0 2.114 2.326 
6 0.483 0 2.004 2.534 
7 0.419 0.076 1.924 2.704 
8 0.373 0.136 1.864 2.847 
9 0.337 0.184 1.816 2.970 
10 0.308 0.223 1.777 3.078 
11 0.285 0.256 1.744 3.173 
12 0.266 0.284 1.717 3.258 
13 0.249 0.308 1.692 3.336 
14 0.235 0.329 1.671 3.407 
15 0.223 0.348 1.652 3.472 
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Control Charts Based On Weighted Averages 
 
The Moving-Average Control Chart 
 
Shewhart x  control chart is relatively insensitive to small shifts in the 
process mean.  Various modifications and supplemental criteria have been 
suggested to improve its ability to detect small shifts.   Control charts based 
on the moving average are also very effective in detecting small process 
shifts.   
 
Suppose that samples of size n have been collected, and let ....,,.....,, 21 txxx   
denote the corresponding sample means.  The moving average of span w at 
time t is defined as  

 

w

xxx
M wttt

t
11 +−− +++

=
L

 

That is, at time period t, the oldest sample mean is dropped and the newest 
one added to the set.  The variance of the moving average tM  is  

( ) ( ) ∑∑
+−=+−=

===
t

wti

t

wti
it nwnw

xV
w

MV
1

22

212

11 σσ
 

Therefore, if x  denotes the center line of the control chart, then the 3-sigma 
control limits for tM  are 

nw
xUCL

σ3+=  

 
and 

nw
xLCL

σ3−=  

 
The control procedure would consist of calculating the new moving average 

tM  as each sample mean tx  becomes available, plotting  tM  on a control 
with upper and lower control limits and concluding that the process is out of 
control if tM  exceeds the control limits.  In general, the magnitude of the 
shift of interest and w are inversely related; smaller shifts should be guarded 
against more effectively by longer moving averages.  
 



 158

Example 
 
An x  control chart with center line 0.10=µ  and upper and lower 3-sigma 
control limits at 16.0 and 4.0 is shown in Figure 1.  Values of the sample 
statistic ix  plotted on the chart for periods 1,2, …. ,t  are listed in table – 1.   
The statistic plotted on this chart will be  

 

8
71 −− +++

= ttt
t

xxx
M

L
 

 
for period .8≥t    For time periods 81 <≤ t  the average of the observations 
for periods 1,2, … t is plotted.  The values of these moving averages are 
shown in Table 1.  
 
The control limits for the moving average control chart may be easily 

obtained.  Since for the x  chart we have 0.63 =xσ  then .0.2/ == nx σσ   
Consequently, we find the upper and lower control limits for the moving-
average control chart as  
 

( )( )
12.12

8

0.23
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33 =+=+=+=
w
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nw
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and 
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xLCL xσσ
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Figure – 1  

 
 

Figure – 2  
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Table 1 : Data and Calculations for the Moving-Average Control Chart  
 

Control Limits for  tM  Sample,  t tx  tM  
LCL UCL 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

10.5 
6.0 
10.0 
11.0 
12.5 
9.5 
6.0 
10.0 
10.5 
14.5 
9.5 
12.0 
12.5 
10.5 
8.0 
9.5 
7.0 
10.0 
13.0 
9.0 

10.5 
8.25 
8.83 
9.38 
10.00 
9.92 
9.36 
9.44 
9.44 
10.50 
10.44 
10.57 
10.57 
10.70 
10.50 
10.44 
10.00 
9.44 
9.88 
9.51 

4.00 
5.76 
6.54 
7.00 
7.32 
7.55 
7.73 
7.88 
7.88 
M 

16.00 
14.24 
13.46 
13.00 
12.68 
12.45 
12.27 
12.12 
12.12 
M 
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Control Limits for  tM  Sample,  t tx  tM  
LCL UCL 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

12.0 
6.0 
12.0 
15.0 
11.0 
7.0 
9.5 
10.0 
12.0 
8.0 
9.0 
13.0 
11.0 
9.0 
10.0 
15.0 
12.0 
8.0 

9.45 
8.89 
9.39 
10.08 
10.58 
10.21 
9.77 
9.90 
9.90 
10.15 
9.78 
9.53 
9.53 
9.78 
9.84 
10.47 
10.47 
10.47 

  

 
The control limits for tM  apply for periods .8≥t   For period 0< t <8, the 

control limits are given by  ./3 ntx σ±   These control limits are shown in 
Table.  An alternative procedure that avoids using special control limits for 
periods t < w is to use an ordinary x  chart until at least w sample means 
have been obtained.  
 
The moving-average control chart is shown in Figure 2.  No points exceed 
the control limits.  Note that for the initial periods t < w  the control limits 
are wider than their final steady-state value.  Moving averages that are less 
than w periods apart are highly correlated, and this often complicates 
interpreting patterns on the control chart.  This is easily seen by examining. 
 
The moving-average control chart is more effective than the usual x  chart in 
detecting small process shifts.  Using both the moving-average and x  
control charts simultaneously can also yield good results.  If the two charts 
are used simultaneously, the process is considered to be out of control if 
either tt xorM  (or both) plot outside their respective control limits.  It is 
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also helpful to plot the points  tM  on  a standard  tx  chart, so that a single 
chart could be used to record the data. 
 
Moving-average control charts can also be used in cases where each sample 
consists of a single observation.  This situation occurs frequently when 
production of a single unit of product requires a very long time, and where 
automatic measurement and test procedures are used.   
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CHAPTER – 13  
 

FORECASTING AND TIME SERIES 
 

INTRODUCTION  

Forecasting helps managers respond quickly and accurately to market 
changes and customer needs.  If various activities, operations and processes 
are properly planned and organized, the control is easier and smoother.  
Forecasting helps reducing failures and cost  in making unnecessary changes 
in the processes and systems.  For example, if the demand for the product 
can be estimated accurately, the operational efficiency of the organization 
goes up. 
 

Forecasting deals with what we think will happen in the future.  Planning 
deals with what we think should happen in the future.  Through adequate 
planning, we attempt to change and control future events and forecasting 
helps us to predict those future events. 
  

Good planning uses forecasts as a valuable input for planning the design and 
operations of an organization. Forecasts are necessary for planning, 
scheduling and controlling the system to facilitate effective and efficient 
output of goods and services. 
 

Marketing uses forecasts to plan products, pricing, positioning and 
promotion purposes.  Finance uses forecasting for financial management and 
for allocation of funds.  Operations managers use forecasts for the 
procurement of raw material, fixing targets, scheduling of jobs and 
equipments.  Top management uses forecasts for planning expansions, 
diversification and for making strategic decisions.  Thus, forecasting plays a 
vital role in the decision making process of a manager.  
 

Planning decisions may be classified as long, medium and short term.  Long 
term decisions involve the development of new products and markets, 
setting up new plants, expansions and diversifications.  Long term may mean 
about 2 years or more into the future.  Such decisions generally lack 
quantitative information and historical data on which to base our forecasts.  
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The collective wisdom of experts in the field plays a significant role in the 
development of forecast for long term planning. 
 

Medium term decisions involve issues such as fixing production and sales 
targets, determining manpower requirements, etc.  
Medium range may be taken to mean from 6 months and up to about 2 years, 
which is the normal time frame for aggregate planning, budgeting and 
resource acquisition and allocation decisions.  
 

Short range refers to less than 6 months.  Examples of areas where such a 
time frame is appropriate are the procurement of materials, scheduling of 
jobs and activities.  Similarly, managers need forecasts to make decisions 
about controlling inventory, production, labour and costs.  Accurate 
forecasts are also needed for immediate future hours, days, and weeks ahead. 
  

Some distinguish between forecasts and predictions.  A forecast is seen as an 
estimate of a future event based on scientific methodology that uses past 
data.  Forecasting requires past data, statistical techniques and managerial 
skills. 
 

On the other hand, a prediction is an estimate of future events obtained 
through subjective factors like, hunch, experience and intuition.  The various 
methods used for forecasting can be classified as follows:  

(i) Qualitative methods  
(ii) Quantitative methods based on averages, moving averages and 

exponential smoothing  
(iii) Regression methods  
(iv) Econometric models  
(v) Auto Regressive and Moving Average (ARMA) models  

 

FORECASTING FOR LONG TERM DECISIONS 

Long term decisions cover areas such as capacity expansion, plant or facility 
location, mergers and acquisitions, and product development over a longer 
time span.  These decisions require forecasts for many years into the future.  
For making long term decisions, past data may not be a reliable indicator of 
future events.  Under such conditions, we mainly rely on qualitative 
forecasting methods.  Qualitative methods depend upon managerial 
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judgement and experience and not on any specific model.  Thus, different 
individuals may use the same qualitative technique and arrive at different 
forecasts.  Quantitative methods for dealing with these opinions and 
judgements are best suited for long term forecasting.   Through such 
methods, we can obtain reasonable forecasts in the face of a great deal of 
uncertainty and lack of data.  Four such techniques are the Delphi Method, 
the Nominal Group Technique, Survey Methods and Life Cycle Analogy 
approaches. 
 

Delphi Method  

This method relies on the subjective opinions of experts and aims at 
minimizing bias and error of judgement.   A panel of experts provides 
written responses on the questions being considered.  The co-ordinator edits 
and summarises the responses.  On the basis of summary, the panel is then 
asked to reconsider the individual responses and respond again to the set of 
questions prepared.  The answers are provided in writing.  The responses of 
the second round are again summarized and fed back to the experts.  This 
process is repeated three to five times until sufficient convergence is 
achieved.   In this method, direct interpersonal relations are avoided and 
personalities do not conflict nor some members can dominate the group.  
 

THE DELPHI TECHNIQUE HAS BEEN APPLIED IN THE 
FOLLOWING AREAS :  
 

a) Forecasting 
b) Evaluating possible budget allocations, 
c) Setting corporate goals and objectives 
d) Generating and evaluating strategies 
e) Exploring urban and regional planning options, and 

f) Planning health care systems.  
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GUIDELINES FOR CONDUCTING A DELPHI STUDY  : 

The following guidelines should be followed while conducting a Delphi 

study.  

 

a) All members should agree to serve on the panel.  
b) The procedure for conducting the study should be explained to the 

panelists in detail.  
c) Every panel member should be assigned a code number. 
d) Two copies of each questionnaire should be sent to the panelists in 

each round so that he can retain a copy for his own record.  
e) The questionnaires should be easy to understand.  
f) It should not contain too many statements.  A practical limit is 

suggested as 25.  
g) Contradictory forecasts should be included to initiate debate.  
h) Injection of moderator’s opinion should be avoided because it has 

been found to substantially bias the results.  
i) When editing the respondent’s comments for clarity, the intent for the 

originator should not be lost.  Similarly, when editing from round to 
round, meaning of a statement should not be changed.  

j) The questionnaire should be pre-tested on any willing guinea pigs 
outside the respondent group.  

 

Nominal Group Technique 

This technique is similar to the Delphi technique.  However this method 
provides an opportunity for interaction and encourages discussions among 
the experts and permit creativity.  At the end of discussions, the experts who 
arrive at a consensus rank the ideas. 
  

Survey Methods  

Surveys are designed and conducted to gather relevant information.  Surveys 
generally use structured questionnaires.  The responses to the questionnaires 
are obtained through various means: 

(a) personal interviews  
(b) telephone interviews  
(c) mail/fax mode 
(d) Internet communications 
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Life Cycle Analogy  

In this case, predictions are based on the patterns related to the introduction, 
growth and saturation phases of similar products.  
 Product Life Cycle 

 

  Growth             Stability                    Decline 

 

 Demand 

 

  

 Time 

 

 

The demand for a product generally tends to follow a predictable pattern 
called the product life cycle.  When a new product is introduced, it has a low 
demand during market development phase. Followed up by a rapid growth 
phase and high demand and finally the demand declines.  The time span for 
various phases from birth to death may vary considerably from product to 
product.  Using various forecasting methods and characteristics of the 
product cycle of similar products we can make prediction for product 
variety, volumes and capacity needed.  
 

FORECASTING FOR MEDIUM AND SHORT TERM DECISIONS  

 

Medium and short terms forecasts are commonly used for production 
planning, scheduling, procurement and financial planning decisions in an 
organisation.  The methods are better structured and are data based as 
compared to long term forecasting.  Descriptions of common methodologies 
follow. 
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Time Series Forecasting  

Time series analysis methods are used to study past data and to identify the 
patterns that are present.  These patterns are then projected into the future.  
A time series can be decomposed into component such as average level, 
trend, seasonality, cycle and error.  The magnitude and form of the 
component are estimated from the available data and projected forwarded 
into the future to make forecasts.  Methods used are moving averages and 
exponential smoothing. 
   

Moving Averages  

The moving averages method is used to estimate the average of a time series 
and thereby remove the effect of random fluctuations.  It is most useful 
when the time series has no pronounced trend or seasonal influence. 
  

This technique involves calculating the average of the n most recent 
observation of a time series and using it as the basis for forecasts for the next 
time period.  Large values of n should be used for a time series that is stable 
and small values of n if it is susceptible to change in the average value.  
 

Exponential Smoothing 

This is the most frequently used method for smoothing data.  It is a weighted 
moving average method that gives recent observations more weight than 
earlier observations.  
It requires three items of data: 

1. Estimated average of the series for the last period  (At-1) i.e. forecast 
for the next period.  

2. Demand for the period ( Dt ).  
3. A smoothing parameter, .10),( << αα  
 

Forecast  for period t is given by 
α=tA (Demand for this period)  )1( α−+ (Average calculated for the 

previous period)  
           1)1( −−+= tt AD αα  

          )( 11 −− −+= ttt ADA α  
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Such a forecast for the next period equals the forecast for the current period 
plus a proportion of the forecast error for the current period.  

     tA  is a weighted average of all past observations.  It can be written as 
the linear combination of past data and weights decay exponentially.  
 

     For example if  20.0=α  

   At   =    0.2 Dt + 0.80  At-1 

         =    0.20  Dt  +  0.16  Dt-1  +  0.128 Dt +  0.1024 Dt-2 

 

Weights given are: 

K,)1(),1(, 2ααααα −−  

 

Example 

     Week Demand 

1 

2 

3 

400 

380 

411 

 

If the actual Demand for the week 4 is 415.  What is the forecast for week 5? 

 

1. Using moving average: 

         The moving average at the end of week 3 is 397
3

400380411
3 =++=A  

Thus forecast for week 4 is 397. 

Forecast for week 5, .402
3

380411415
4 =++=A  

 
2. Using Exponential smoothing:  

Forecast for the week 4 using  .1.0=α  

A3 = 0.10 (411)  +  0.90 (390)  = 392.1 
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If the actual demand for week 4 is 415, the average for week 4 would 
be: 
 A4  =  0.1 × 415  +  0.9 × 392.1  =  394.4 

 

Causal Forecasting Methods  

In this case, we develop a cause and effect relationship model between the 
variable of interest and its  causal factors.  For example, the demand for 
tyres of a particular type may be related to the population of existing 
vehicles, road mileage of existing vehicles, wear out rate of tyres and road 
conditions.  We collect relevant data on these variables and use regression 
analysis techniques to identify the nature of the statistical relationship.  The 
regression model fitted may be linear, polynomial or non-linear.  Once the 
regression relationship is established, we make a prediction based on it.   
Causal forecasting methods also include econometric models, simulation 
model and input and output models.  
 

Box and Jenkins have proposed a sophisticated technique for stochastic 
model building and forecasting using time series data.  
 

Auto-Regressive Model, AR(p) 

In this case, the current value is expressed as a linear combination of p-
previous values of time series and random component. 
Moving Average Model, MA(q) 
In this model, the current value is made linearly dependent on q previous 

error terms. 

 

Mixed Auto Regressive-Moving Average (ARMA) Model 
 
Sometimes, it is advantageous to include both autoregressive and moving 
averages in the model.  This leads to the mixed auto regressive (ARMA) 
model.  
 

 

 



 171

Activity A 

Describe the role of forecasting in planning 

_____________________________________________________________

_____________________________________________________________

_____________________________________________________________ 

Activity B 

Describe the method to be used for forecasting the monthly demand for a 

newspaper.  

_____________________________________________________________

_____________________________________________________________

_____________________________________________________________ 

 

 

Activity C 

Describe the advantages of quantitative methods of forecasting over 

qualitative methods 

_____________________________________________________________

_____________________________________________________________

_____________________________________________________________ 

Activity D 

What methods you think are used for weather forecasting ? 

_____________________________________________________________

_____________________________________________________________

_____________________________________________________________ 
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7. Using a three period moving average predict the demand for the  

         next period 

 

Period 1 2 3 4 5 

Demand 15 24 34 21 35 

 

8. Using exponential smoothing and with alpha 2.0)( =α , predict the 

demand for week 7 

 

Week 1 2 3 4 5 6 

Demand 21 32 43 43 30 45 

 

 

GENERAL STEPS IN THE FORECASTING PROCESS 

1.  Identify the General Need. 
2. Select the Period (Time Horizon) of Forecast 
3. Select the Indicators Relevant to the Need: 

(i) Industry Sales  
(ii) Competitors (collective) present and projected capacity. 
(iii) Population projection (in case product is directly related to 

the population). 
(iv) Income levels.  
(v) Economic development etc.  

4. Select the Forecast Model to be  Used  :  For this, knowledge of 
various forecasting models, in which situations these are applicable, 
how reliable each one of them is; what type of data is required.  On 
these considerations; one or more models can be selected.  

5. Data Collection :  With reference to various indicators identified-

collect data from various appropriate sources-data which is 

compatible with the model(s) selected in step (4).  Data should also go 

back that much in past, which meets the requirements of the model.  
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6. Prepare Forecast : Apply the model using the data collected and 
calculate the value of the forecast.  

7. Evaluate.  

 
 

TIME SERIES COMPONENT 

 
A sequence of observations on a variable of interest at equally spaced points 

in time  

 

Variable of Interests :  

 

  -   Sales -  Production 

  -   Demand -  No. of Accidents 

  - Population -  No. of Tourists visiting 

  - Inventory -  Traffic Intensity 

  - Power Consumption  

 

Equally Spaced Points in Time 

 

Days                Quarters 

Weeks              Years 

Months 
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Example of Time Series 

 

TIME 1985 1986 1987 1988 1989 1990 1991 

SALES 

(Rs. Crore) 

2.2 2.1 2.4 2.6 2.7 2.9 2.8 

 

Time Series Analysis :  

 
We use quantitative techniques to study past behaviour of a Time Series to  

• Identify the pattern present 

• Detect changes in pattern 

• Use changes and pattern to predict the future behavior of Time Series 

• Forecasts provide valuable input for decision making 

 

Components or Variations in Time Series 

• Trend 

• Cyclical Fluctuation 

• Seasonal Variation 

• Irregular or Random Variation 

 
TREND : Long Term direction in which the Series is moving   
                The value of the variable tends to increase or decrease over a long    
                period  of time. 

 

Example   

            -    Steady increase in cost of living 

- Increase  in  Population 

- No. of tourist visiting a particular place 



 175

 

Trend Reflects the Net Effect of Factors : 

 

• Change in population 

• Demographic Characteristics 

• Technological Improvements 

• Economic Development 

• Gradual Shift in Habit and Attitude 

 

These factors tend to operate fairly gradually and in one direction or other 

over a long period.  

 

We describe the trend component by a smooth continuous curve types of 

trends 

 

• Linear trend 

• Non-linear trend  

• Linear trend or straight line trend  

 

Y  =  a  +  bt  +  e 

 

 Y :  Value of dependent variable 

  t  :  Value of time variable 

 a  :  The Y – intercept (value of Y when t = 0) 

 b  :  Slope of the trend line 

 e  :  Random component 
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• Non – linear trend : Quadratic trend :  

 

Y  =  a  +  bt  +  ct2  +  e 

 

Example of Quadratic trend : 

 

T (Year) 1992 1993 1994 1995 1996 

Y (Sales in 

Millions) 

13 24 39 65 106 

 

24.2489.1583.39ˆ ttY ++=  

 

Where t =  T – 1994.  Predict sales for the year, 1997.  

 

• Exponential trend : 

Y  =  k  at  for  k > c, a > o 

 

      For a > 1  :  Growth curve 

      For 0 < a < 1  Decay curve 

      Example :  Population,  Money invested,   Depreciation,  GNP 

 

• Cyclical variation  :  

Component of a time series that trends to oscillate above and below the 
trend line for periods longer than one year 

 

Factors leading to cyclical variation  
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• Buildups and depletion of inventories  

• Shifts in rates of capital expenditure  

• Year to year variation in harvests  

• Change in Government monetary and fiscal policy.  

 

We first eliminate the effect of seasonal component by using time series 
consisting of annual data.  
 

Measures of  cyclical variation   

• Percent of trend 

• Relative cyclical residual  

 

Seasonal variation  :  

 

• Means a periodic movement in a time series where period is not 

longer than one year.  

• A periodic movement is one which repeats at regular interval of time.  

• It is repetitive and predictable.  

 

 

Main Causes :  

 

Climatic changes of different seasons  

Customs and habits which people  follow at different times  
 
We can project past pattern into future and eliminate its effect from time 
series to get deseasonalized time series.  



 178

 

Ratio to moving average method :  

 

• Develop an index to describe the degree of seasonal variation index is 
based on a mean of 100  

• Periodic fluctuation are eliminated by taking moving average of 
period equal to the period of fluctuation  

• Moving averages are centred against the time which is the mid-point 
of the time points included in the calculation of moving averages.  

• When period is odd, moving averages correspond to time point given 
in time series  

• When period is even, we calculate a subsequent 2 – item moving 
averages.  

• Calculate percentage of actual value to moving value for each time 
point. 

• Collect these percentage for some period and find average by deleting 
extreme values.  

• Adjust the modified means.  
 

 

Year Sales per quarter ( x $ 10,000) 

I                  II                 III                      IV 

1988 

1989 

1990 

1991 

1992 

      16                21                  9                        18 

      15                20                 10                       18 

      17                24                 13                       22 

      17                25                 11                       21 

      18                26                 14                       25 

 

 

1. Deseasonalizing the time series 

2. Developing the trend line 
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3. Finding the cyclical variation around the trend line  

 
 

 
 
 
 

Year 
(1) 

 
 
 
 

Quarter 
(2) 

 
 
 

Actual 
Sales 
(3) 

 
Step 
1:4 

Quarter 
Moving  
Total 
(4) 

Step 2:4 
Quarter 
Moving 
Average 

(5) = 
4

)4(  

Step 3:4 
Quarter 

Centered 
Moving 
Average 

(6) 

Step 4: 
Percentage 
of Actual to 

Moving 
Average 

(7) = 

100
6

)3( ×  

1988 I 
II 
III 
IV 

16 
21 
9 
18 

 
 

64 
63 

 
 

16.00 
15.75 

 
 

15.825 
15.625 

 
 

  56.7 
115.2 

1989 I 
II 
III 
IV 

15 
20 
10 
18 

62 
63 
63 
65 

15.50 
15.75 
15.75 
16.25 

15.625 
15.750 
16.000 
16.750 

  96.0 
127.0 
  62.0 
107.5 

1990 I 
II 
III 
IV 

17 
24 
13 
22 

69 
72 
76 
76 

17.25 
18.00 
19.00 
19.00 

17.625 
18.500 
19.00 
19.125 

  96.5 
129.7 
  68.4 
115.0 

1991 I 
II 
III 
IV 

17 
25 
11 
21 

77 
75 
74 
75 

19.25 
18.75 
18.50 
18.75 

19.000 
18.625 
18.625 
18.875 

  89.5 
134.2 
  59.1 
111.3 

1992 I 
II 
III 
IV 

18 
26 
14 
25 

76 
79 
83 

19.00 
19.75 
20.75 

19.375 
20.250 

  92.9 
128.4 
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Year 

Step 5 
         I               II                  III            IV 

1988 
1989 
1990 
1991 
1992 

                --                  --                  56.7            115.2 
            96.0             127.0                62.5           107.5 
            96.5             129.7                68.4           115.0 
            89.5             134.2                59.1           111.3 
            92.9             128.4                  --                -- 
           -------          ---------           -------           -------- 
Modi- 
fied     188.9            258.1              121.6           226.3 
sum 
 

Modified mean :  Quarter I   45.94
2

9.188 =  

                                         II   05.129
2

1.258 =  

                                        III   80.60
2

6.121 =  

                                        IV   15.113
2

3.226 =  

                                                             --------- 
                                                              397.45 

 
 
 
 

Quarter 

Step 6 

Adjusting factor =  0064.1
45.397

400 =  

Indices              ×             Adjusting Factor       =        Seasonal 
Indices 

I 
II 
III 
IV 

  94.45                 ×                  1.0064                  =                95.1 
129.05                 ×                  1.0064                  =              129.9 
 60.80                  ×                  1.0064                  =                61.2 
113.15                 ×                  1.0064                  =              113.9 
                                  Sum of seasonal indices     =              400.1 
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Year 
(1) 

Quarter 
(2) 

Actual Sales 
(3) 

Seasonal Index / 
100 
(4) 

Deseasonalized Sales 
(5) = (3)  +  (4) 

1988 I 
II 
III 
IV 

16 
21 
9 
18 

0.951 
1.299 
0.612 
1.139 

16.8 
16.2 
14.7 
15.8 

1989 I 
II 
III 
IV 

15 
20 
10 
18 

0.951 
1.299 
0.612 
1.139 

15.8 
15.4 
16.3 
15.8 

1990 I 
II 
III 
IV 

17 
24 
13 
22 

0.951 
1.299 
0.612 
1.139 

17.9 
18.5 
21.2 
19.3 

1991 I 
II 
III 
IV 

17 
25 
11 
21 

0.951 
1.299 
0.612 
1.139 

17.9 
19.2 
18.0 
18.4 

1992 I 
II 
III 
IV 

18 
26 
14 
25 

0.951 
1.299 
0.612 
1.139 

18.9 
20.0 
22.9 
21.9 
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CHAPTER – 14  
 

SIX SIGMA CONCEPT IN  
ENVIRONMENTAL MANAGEMENT 

 
What is "Six Sigma"? 

Six Sigma is a well-structured, data-driven methodology for eliminating 
defects, waste, or quality control problems of all kinds in manufacturing, 
service delivery, management, and other business activities. Six Sigma 
methodology is based on the combination of well-established statistical 
quality control techniques, simple and advanced data analysis methods, and 
the systematic training of all personnel at every level in the organization 
involved in the activity or process targeted by Six Sigma.  

Why is Six Sigma so popular? 

Six Sigma methodology has recently gained wide popularity because it has 
proven to be successful not only at improving quality but also at producing 
large cost savings along with those improvements. Some spectacular Six 
Sigma "success stories" at large corporations have been widely publicized 
and they captured the imagination of many business leaders.  

For example, Jack Welch, a CEO of General Electric (one of the largest 
manufacturing businesses in the world) said "Six Sigma is the most 
important initiative GE has ever undertaken--it is part of the genetic code of 
our future leadership." and he credits Six Sigma with cost savings at GE in 
the range of billions of dollars.  

Technically Speaking... 

The term Six Sigma (a trademark of Motorola, where it originated over 12 
years ago) reflects the statistical objective of the approach, namely striving 
to achieve a negligible number of defects, corresponding to the probability 
associated with a six sigma value for the normal curve: Applying the normal 
curve, Six Sigma attempts to relegate defects and quality problems to the 
very tails of the distribution, making such problems literally rare exceptions 
in a process that operates almost without defects. To achieve this "Six Sigma 
objective," a process must not produce more than 3.4 defects per million 
opportunities to produce such defects (where a "defect" is defined as any 
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kind of unacceptable outcome produced by the process under scrutiny). Note 
that the 3.4 defects-per-million criterion actually corresponds to a normal z 
value of 4.5 because the Six Sigma approach allows for 1.5 times sigma 
worth of so-called "drift" or process "slop" (termed by Motorola the "Long-
Term Dynamic Mean Variation"). Hence, the most basic statistical tool for 
the Six Sigma effort is the Six Sigma calculator that will compute the 
number of defects given the respective one, two, .., six sigma process. In 
addition, a wide variety of much more complex analytic techniques are 
recommended by the Six Sigma approach and need to be used at the 
consecutive stages of the Six Sigma project, depending on the nature of the 
process.  

Key Concepts of Six Sigma 

At its core, Six Sigma revolves around a few key concepts.  

Critical to Quality: Attributes most important to the human being 
Defect: Failing to deliver what the human being wants 
Process Capability: What your process can deliver 
Variation: What the human being sees and feels 
Stable Operations: Ensuring consistent, predictable processes to 

improve  
what the human being sees and feels 

Design for Six 
Sigma: 

Designing to meet human being needs and process 
capability 

 

Human Beings  Feel the Variance, Not the Mean 

Often, our inside-out view of the business is based on average or mean-
based measures of our recent past. Customers don't judge us on averages, 
they feel the variance in each transaction, each product we ship. Six Sigma 
focuses first on reducing process variation and then on improving the 
process capability. 

Customers value consistent, predictable business processes that deliver 
world-class levels of quality. This is what Six Sigma strives to produce. 
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How does it work? 

The power of Six Sigma lies in its "empirical," data-driven approach (and its 
focus on using quantitative measures of how the system is performing) to 
achieve the goal of the process improvement and variation reduction. That is 
done through the application of so-called "Six Sigma improvement projects" 
which, in turn, follow the "Six Sigma DMAIC" sequence of steps (Define, 
Measure, Analyze, Improve, and Control). Specifically:  

• Define. The Define phase is concerned with the definition of project 
goals and boundaries, and the identification of issues that need to be 
addressed to achieve the higher (better) sigma level. 

• Measure. The goal of the Measure phase of the Six Sigma strategy is 
to gather information about the current situation, to obtain baseline 
data on current process performance, and to identify problem areas. 

• Analyze. The goal of the Analyze phase of the Six Sigma quality 
effort is to identify the root cause(s) of quality problems, and to 
confirm those causes using the appropriate data analysis tools. 

• Improve. The goal of the Improve phase is to implement solutions 
that address the problems (root causes) identified during the previous 
(Analyze) phase. 
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• Control.  The goal of the Control phase is to evaluate and monitor the 
results of the previous phase (Improve).  

There is also a variation of the fundamental Six Sigma DMAIC sequence, 
called DMADV, applicable to the design of new processes. In the DMADV 
sequence, the Define stage is identical to the one in DMAIC (see above); the 
Measure stage focuses on the measurement of the customer and/or 
market/application needs, the Analyze stage deals with the analysis of the 
process options and, finally, the Improve and Control  stages are replaced 
by the Design (design the process to meet the customer and/or 
market/application needs) and Verify  (verify the design performance and 
ability to meet the criteria as set at the Design level) stages. Each of these 
steps involves using specific analytic (quantitative) methods from a wide 
selection of methods recommended by the Six Sigma approach (depending 
on the nature of the process). 

The primary goal of Six Sigma is to improve customer satisfaction, and 
thereby profitability, by reducing and eliminating defects. Defects may be 
related to any aspect of customer satisfaction: high product quality, schedule 
adherence, cost minimization. Underlying this goal is the Taguchi Loss 
Function  which shows that increasing defects leads to increased customer 
dissatisfaction and financial loss. Common Six Sigma metrics include defect 
rate (parts per million or ppm), sigma level, process capability indices, 
defects per unit, and yield. Many Six Sigma metrics can be mathematically 
related to the others.The Six Sigma drive for defect reduction, process 
improvement and customer satisfaction is based on the "statistical thinking" 
paradigm  

• Everything is a process  
• All processes have inherent variability  
• Data is used to understand the variability and drive process 

improvement decisions  

As the roadmap for actualizing the statistical thinking paradigm, the key 
steps in the Six Sigma improvement framework are Define - Measure - 
Analyze - Improve - Control (see Figure 1). Six Sigma distinguishes itself 
from other quality improvement programs immediately in the "Define" step. 
When a specific Six Sigma project is launched, the customer satisfaction 
goals have likely been established and decomposed into subgoals such as 
cycle time reduction, cost reduction, or defect reduction. (This may have 
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been done using the Six Sigma methodology at a business/organizational 
level.) The Define stage for the specific project calls for baselining and 
benchmarking the process to be improved, decomposing the process into 
manageable sub-processes, further specifying goals/sub-goals and 
establishing infrastructure to accomplish the goals. It also includes an 
assessment of the cultural/organizational change that might be needed for 
success. 

Once an effort or project is defined, the team methodically proceeds through 
Measurement, Analysis, Improvement, and Control steps. A Six Sigma 
improvement team is responsible for identifying relevant metrics based on 
engineering principles and models. With data/information in hand, the team 
then proceeds to evaluate the data/information for trends, patterns, causal 
relationships and "root cause," etc. If needed, special experiments and 
modeling may be done to confirm hypothesized relationships or to 
understand the extent of leverage of factors; but many improvement projects 
may be accomplished with the most basic statistical and non-statistical tools. 
It is often necessary to iterate through the Measure-Analyze-Improve steps. 
When the target level of performance is achieved, control measures are then 
established to sustain performance. A partial list of specific tools to support 
each of these steps is shown in Figure 1. 
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Note: Many tools can be effectively used in 
multiple steps of the framework. Tools that are 
not particularly relevant to software applications 
have not been included in this list. 

Figure 1: Six Sigma Improvement Framework and Toolkit 

An important consideration throughout all the Six Sigma steps is to 
distinguish which process substeps significantly contribute to the end result. 
The defect rate of the process, service or final product is likely more 
sensitive to some factors than others. The analysis phase of Six Sigma can 
help identify the extent of improvement needed in each substep in order to 
achieve the target in the final product. It is important to remain mindful that 
six sigma performance (in terms of the ppm metric) is not required for every 
aspect of every process, product and service. It is the goal only where it 
quantitatively drives (i.e, is a significant "control knob" for) the end result of 
customer satisfaction and profitability. 

The current average industry runs at four sigma, which corresponds to 6210 
defects per million opportunities. Depending on the exact definition of 
"defect" in payroll processing, for example, this sigma level could be 
interpreted as 6 out of every 1000 paychecks having an error. As "four 
sigma" is the average current performance, there are industry sectors running 
above and below this value. Chemists went testing for MTBE in water if 
operate at two sigma level then commit 308537 errors per million 
opportunities.  

On the other extreme, in (U.S.) air quality fatality rates run at better than six 
sigma, which could be interpreted as fewer than 3.4 fatalities per million 
persons - that is, fewer than 0.00034 fatalities per 100 persons. 

As just noted, flight fatality rates are "better than six sigma," where "six 
sigma" denotes the actual performance level rather than a reference to the 
overall combination of philosophy, metric, and improvement framework. 
Because customer demands will likely drive different performance 
expectations, it is useful to understand the mathematical origin of the 
measure and the term "six-sigma process." Conceptually, the sigma level of 
a process or product is where its customer-driven specifications intersect 
with its distribution. A centered six-sigma process has a normal distribution 
with mean=target and specifications placed 6 standard deviations to either 
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side of the mean. At this point, the portions of the distribution that are 
beyond the specifications contain 0.002 ppm of the data (0.001 on each 
side). Practice has shown that air quality experienced by people shows a 
shift (due to drift over time) of 1.5 standard deviations so that the mean no 
longer equals target. When this happens in a six-sigma process, a larger 
portion of the distribution now extends beyond the specification limits: 3.4 
ppm. 

 

Figure 2: Six Sigma Process with Mean Shifted from Nominal by 1. 5 

 

Assumptions: 

• Normal Distribution  
• Process Mean Shift of 1.5 from Nominal is Likely  
• Process Mean and Standard Deviation are known  
• Defects are randomly distributed throughout units  
• Parts and Process Steps are Independent  

For this discussion, original nominal value = target 
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Key 

 =standard deviation 
µ = center of the distribution 
(shifted 1.5  from its original , on-target location) 
+/-3  & +/-6  show the specifications relative to 

       the original target 

Figure 2 depicts a 1.5-shifted distribution with "6" annotations. In 
manufacturing, this shift results from things such as mechanical wear over 
time and causes the six-sigma defect rate to become 3.4 ppm. The magnitude 
of the shift may vary, but empirical evidence indicates that 1.5 is about 
average. Does this shift exist in the software process? While it will take time 
to build sufficient data repositories to verify this assumption within the 
software and systems sector, it is reasonable to presume that there are factors 
that would contribute to such a shift.  

Process Map 

A process map 

• Graphically outlines the sequence of a process 
• Shows how steps in a process relate to each other 
• Identifies bottlenecks 
• Pinpoints redundancies 
• Locates waste in the process 

 
 
THE COMMON METRIC:  DEFECTS PER UNIT (DPU) 

    DPU is the best measure of the overall quality of the process. 
 

• DPU is the independent variable. 
• Process yields are dependent upon DPU.       

 
We checked 500 samples of ambient air and these had 10 defects then, 
 
  d.p.u. = d/u = 10/500 = 0.02 
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In a sample of ambient air we check for the following: 
 

a) organic compounds soluble in benzene 
b) 2SO  solution  
c) 2NO  concentration  
d) CO concentration  
e) Particulate matter 

 
Then there are 5 opportunities for the defects to occur. Then, the total no. of 
opportunities = m u = 5x500 = 2500 
 
Defects per opportunity, d.p.o. = d/(m u) = 10/2500 = 0.004 
If expressed in terms of d.p.m.o. (defects per million opportunities)  it 
becomes  
d.p.m.o . = d.p.o. x 106 = 4000 PPM  

From d.p.o., we go to the normal distribution tables and calculate ZLT and 
corrected to ZST by adjusting for shift (1.5 s) then,  
 
ÛZLT = 2.65; and  
ÛZST = 2.65 + 1.5 = 4.15 

No. of opportunities = No. of points checked 
If you don’t check some points then it becomes a passive opportunity. We 
should take only active opportunities into our calculation of d.p.o., and s 
level. 

Customer Satisfaction and 
 Defects Per Unit (DPU) 

Reducing the Defects Per Unit (DPU) in the entire process: 
• Reduces delivery delinquencies; 
•  Reduces delivered defects and   early life failure rate 

Process Cost and DPU 

• Reducing the Defects Per Unit (DPU) in the entire process: 
• Reduces the cycle time per unit…. 
• Reducing WIP (Work in Process); 
• Reducing inventory carrying costs; and  defect analysis and repair cost 

per unit; therefore…Decreases Manufacturing Cost Per Unit 
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AA  VViissiioonn  ffoorr  tthhee  FFuuttuurree 

 

••  DDeevveelloopp  aa  wwaarrnniinngg  ssyysstteemm  ttoo  pprreevveenntt  tthhrreeaattss  ttoo  hhuummaann  hheeaall tthh  aanndd  tthhee  
eennvvii rroonnmmeenntt  aanndd  ttoo  aacctt  sswwii ff ttllyy  wwhheenn  ssuucchh  ppootteennttiiaall   tthhrreeaattss  bbeeccoommee  aa  
rreeaall ii ttyy..  

••  UUssee  mmoonnii ttoorriinngg  ddaattaa  ttoo  ddeevveelloopp  bbeetttteerr  rruulleess  aanndd  ttoo  mmoonnii ttoorr  tthheeii rr  
eeffffeeccttiivveenneessss..  

••  BBee  aabbllee  ttoo  qquuiicckkllyy  rreessppoonndd  ttoo  ppuubbll iicc  hheeaall tthh  aanndd  eennvvii rroonnmmeennttaall   
ccoonncceerrnnss  rraaiisseedd  bbyy  tthhee  ppuubbll iicc..  

••  EEnnhhaannccee  tthhee  aabbii ll ii ttyy  ttoo  pprroovviiddee  aaccccuurraattee  aanndd  ttiimmeellyy  iinnffoorrmmaattiioonn  ttoo  tthhee  
ppuubbll iicc  ccoonncceerrnniinngg  eennvvii rroonnmmeennttaall   qquuaall ii ttyy..  
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Managing for Environmental Results 

• Environmental Results Management System  
• Requires the agency to focus on achieving environmental results 
• Connects results management with budget planning 
• Based upon the Plan-Do-Check-Adapt cycle 

 

• Agency’s Strategic Plan 
• Agency’s Workplan 
• Division Workplans 
• Environmental Performance 
• Quarterly Performance Report 
• Quarterly Management Review 
• Monthly Division Measures 
• Department Results  
• Legislative Reports 

 

Six Sigma 

• System for building and sustaining performance 
• Uses specific tools for process improvement 
• PCA uses Six Sigma because our resources are decreasing but our 

workload is growing 
• Measurement of processes plays a significant role 
• Requires calculation of cost/benefit and environmental benefit 
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Glossary of Definitions 

DFSS – (Design for Six Sigma) is a systematic methodology utilizing tools, 
training and measurements to enable us to design products and processes 
that meet customer expectations and can be produced at Six Sigma quality 
levels. 

DMAIC  – (Define, Measure, Analyze, Improve and Control) is a process for 
continued improvement. It is systematic, scientific and fact based. This 
closed-loop process eliminates unproductive steps, often focuses on new 
measurements, and applies technology for improvement.  

Six Sigma – A vision of quality which equates with only 3.4 defects per 
million opportunities for each product or service transaction. Strives for 
perfection. 

Quality Tools 
Associates are exposed to various tools and terms related to quality. Below 
are just a few of them. 

Control Chart – Monitors variance in a process over time and alerts the 
business to unexpected variance which may cause defects. 

Defect Measurement – Accounting for the number or frequency of defects 
that cause lapses in product or service quality. 

Pareto Diagram – Focuses on efforts or the problems that have the greatest 
potential for improvement by showing relative frequency and/or size in a 
descending bar graph. Based on the proven Pareto principle: 20% of the 
sources cause 80% of any problems. 

Process Mapping – Illustrated description of how things get done, which 
enables participants to visualize an entire process and identify areas of 
strength and weaknesses. It helps reduce cycle time and defects while 
recognizing the value of individual contributions. 

Root Cause Analysis – Study of original reason for nonconformance with a 
process. When the root cause is removed or corrected, the nonconformance 
will be eliminated. 
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Statistical Process Control – The application of statistical methods to 
analyze data, study and monitor process capability and performance.  

Tree Diagram – Graphically shows any broad goal broken into different 
levels of detailed actions. It encourages team members to expand their 
thinking when creating solutions. 

Quality Terms  

Black Belt – Leaders of team responsible for measuring, analyzing, 
improving and controlling key processes that influence customer satisfaction 
and/or productivity growth. Black Belts are full-time positions.  

Control  – The state of stability, normal variation and predictability. Process 
of regulating and guiding operations and processes using quantitative data. 

CTQ: Critical to Quality (Critical "Y") – Element of a process or practice 
which has a direct impact on its perceived quality. 

Customer Needs, Expectations – Needs, as defined by customers, which 
meet their basic requirements and standards. 

Defects – Sources of customer irritation. Defects are costly to both 
customers and to manufacturers or service providers. Eliminating defects 
provides cost benefits. 

Green Belt – Similar to Black Belt but not a full-time position. 

Master Black Belt – First and foremost teachers. They also review and 
mentor Black Belts. Selection criteria for Master Black Belts are quantitative 
skills and the ability to teach and mentor. Master Black Belts are full-time 
postions.  

Variance – A change in a process or business practice that may alter its 
expected outcome. 
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TABLE A    :    AREAS UNDER THE STANDARD NORMAL CURVE 

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
-3.4 
-3.3 
-3.2 
-3.1 
-3.0 

-2.9 
-2.8 
-2.7 
-2.6 
-2.5 

-2.4 
-2.3 
-2.2 
-2.1 
-2.0 

-1.9 
-1.8 
-1.7 
-1.6 
-1.5 

-1.4 
-1.3 
-1.2 
-1.1 
-1.0 

-0.9 
-0.8 
-0.7 
-0.6 
-0.5 

-0.4 
-0.3 
-0.2 
-0.1 
-0.0 

0.0003 
0.0005 
0.0007 
0.0010 
0.0013 

0.0019 
0.0026 
0.0035 
0.0047 
0.0062 

0.0082 
0.0107 
0.0139 
0.0179 
0.0228 

0.0287 
0.0359 
0.0446 
0.0548 
0.0668 

0.0808 
0.0968 
0.1151 
0.1357 
0.1587 

0.1841 
0.2119 
0.2420 
0.2743 
0.3085 

0.3446 
0.3821 
0.4207 
0.4602 
0.5000 

0.0003 
0.0005 
0.0007 
0.0009 
0.0013 

0.0018 
0.0025 
0.0034 
0.0045 
0.0060 

0.0080 
0.0104 
0.0136 
0.0174 
0.0222 

0.0281 
0.0352 
0.0436 
0.0537 
0.0655 

0.0793 
0.0951 
0.1131 
0.1335 
0.1562 

0.1814 
0.2090 
0.2389 
0.2709 
0.3050 

0.3409 
0.3783 
0.4168 
0.4562 
0.4960 

0.0003 
0.0005 
0.0006 
0.0009 
0.0013 

0.0017 
0.0024 
0.0033 
0.0044 
0.0059 

0.0078 
0.0102 
0.0132 
0.0170 
0.0217 

0.0274 
0.0344 
0.0427 
0.0526 
0.0643 

0.0778 
0.0934 
0.1112 
0.1314 
0.1539 

0.1788 
0.2061 
0.2358 
0.2676 
0.3015 

0.3372 
0.3745 
0.4129 
0.4522 
0.4920 

0.0003 
0.0004 
0.0006 
0.0009 
0.0012 

0.0017 
0.0023 
0.0032 
0.0043 
0.0057 

0.0075 
0.0099 
0.0129 
0.0166 
0.0212 

0.0268 
0.0336 
0.0418 
0.0516 
0.0630 

0.0764 
0.0918 
0.1093 
0.1292 
0.1515 

0.1762 
0.2033 
0.2327 
0.2643 
0.2981 

0.3336 
0.3707 
0.4090 
0.4483 
0.4880 

0.0003 
0.0004 
0.0006 
0.0008 
0.0012 

0.0016 
0.0023 
0.0031 
0.0041 
0.0055 

0.0073 
0.0096 
0.0125 
0.0162 
0.0207 

0.0262 
0.0329 
0.0409 
0.0505 
0.0618 

0.0749 
0.0901 
0.1075 
0.1271 
0.1492 

0.1736 
0.2005 
0.2296 
0.2611 
0.2946 

0.3300 
0.3669 
0.4052 
0.4443 
0.4840 

0.0003 
0.0004 
0.0006 
0.0008 
0.0011 

0.0016 
0.0022 
0.0030 
0.0040 
0.0054 

0.0071 
0.0094 
0.0122 
0.0158 
0.0202 

0.0256 
0.0322 
0.0401 
0.0495 
0.0606 

0.0735 
0.0885 
0.1056 
0.1251 
0.1469 

0.1711 
0.1977 
0.2266 
0.2578 
0.2912 

0.3264 
0.3632 
0.4013 
0.4404 
0.4801 

0.0003 
0.0004 
0.0006 
0.0008 
0.0011 

0.0015 
0.0021 
0.0029 
0.0039 
0.0052 

0.0069 
0.0091 
0.0119 
0.0154 
0.0197 

0.0250 
0.0314 
0.0392 
0.0485 
0.0594 

0.0722 
0.0869 
0.1038 
0.1230 
0.1446 

0.1685 
0.1949 
0.2236 
0.2546 
0.2877 

0.3228 
0.3594 
0.3974 
0.4364 
0.4761 

0.0003 
0.0004 
0.0005 
0.0008 
0.0011 

0.0015 
0.0021 
0.0028 
0.0038 
0.0051 

0.0068 
0.0089 
0.0116 
0.0150 
0.0192 

0.0244 
0.0307 
0.0384 
0.0475 
0.0582 

0.0708 
0.0853 
0.1020 
0.1210 
0.1423 

0.1660 
0.1922 
0.2206 
0.2514 
0.2843 

0.3192 
0.3557 
0.3936 
0.4325 
0.4721 

0.0003 
0.0004 
0.0005 
0.0007 
0.0010 

0.0014 
0.0020 
0.0027 
0.0037 
0.0049 

0.0066 
0.0087 
0.0113 
0.0146 
0.0188 

0.0239 
0.0301 
0.0375 
0.0465 
0.0571 

0.0694 
0.0838 
0.1003 
0.1190 
0.1401 

0.1635 
0.1894 
0.2177 
0.2483 
0.2810 

0.3156 
0.3520 
0.3897 
0.4286 
0.4681 

0.0002 
0.0003 
0.0005 
0.0007 
0.0010 

0.0014 
0.0019 
0.0026 
0.0036 
0.0048 

0.0064 
0.0084 
0.0110 
0.0143 
0.0183 

0.0233 
0.0294 
0.0367 
0.0455 
0.0559 

0.0681 
0.0823 
0.0985 
0.1170 
0.1379 

0.1611 
0.1867 
0.2148 
0.2451 
0.2776 

0.3121 
0.3483 
0.3859 
0.4217 
0.4641 
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Table A:  continued 

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 
0.1 
0.2 
0.3 
0.4 

0.5 
0.6 
0.7 
0.8 
0.9 

1.0 
1.1 
1.2 
1.3 
1.4 

1.5 
1.6 
1.7 
1.8 
1.9 

2.0 
2.1 
2.2 
2.3 
2.4 

2.5 
2.6 
2.7 
2.8 
2.9 

3.0 
3.1 
3.2 
3.3 
3.4 

0.5000 
0.5398 
0.5793 
0.6179 
0.6554 

0.6915 
0.7257 
0.7580 
0.7881 
0.8159 

0.8413 
0.8643 
0.8849 
0.9032 
0.9192 

0.9332 
0.9452 
0.9554 
0.9641 
0.9713 

0.9772 
0.9821 
0.9861 
0.9893 
0.9918 

0.9938 
0.9953 
0.9965 
0.9974 
0.9981 

0.9987 
0.9990 
0.9993 
0.9995 
0.9997 

0.5010 
0.5438 
0.5832 
0.6217 
0.6591 

0.6950 
0.7291 
0.7611 
0.7910 
0.8186 

0.8438 
0.8665 
0.8869 
0.9049 
0.9207 

0.9345 
0.9463 
0.9564 
0.9649 
0.9719 

0.9778 
0.9826 
0.9864 
0.9896 
0.9920 

0.9940 
0.9955 
0.9966 
0.9975 
0.9982 

0.9987 
0.9991 
0.9993 
0.9995 
0.9997 

0.5080 
0.5478 
0.5871 
0.6255 
0.6628 

0.6985 
0.7324 
0.7642 
0.7939 
0.8212 

0.8461 
0.8686 
0.8888 
0.9066 
0.9222 

0.9357 
0.9474 
0.9573 
0.9656 
0.9726 

0.9783 
0.9830 
0.9868 
0.9898 
0.9922 

0.9941 
0.9956 
0.9967 
0.9976 
0.9982 

0.9987 
0.9991 
0.9994 
0.9995 
0.9997 

0.5120 
0.5517 
0.5910 
0.6293 
0.6664 

0.7019 
0.7357 
0.7673 
0.7967 
0.8238 

0.8485 
0.8708 
0.8907 
0.9082 
0.9236 

0.9370 
0.9484 
0.9582 
0.9664 
0.9732 

0.9788 
0.9834 
0.9871 
0.9901 
0.9925 

0.9943 
0.9957 
0.9968 
0.9977 
0.9981 

0.9988 
0.9991 
0.9994 
0.9996 
0.9997 

0.5160 
0.5557 
0.5948 
0.6331 
0.6700 

0.7054 
0.7389 
0.7704 
0.7995 
0.8264 

0.8508 
0.8729 
0.8925 
0.9099 
0.9251 

0.9382 
0.9495 
0.9591 
0.9671 
0.9738 

0.9793 
0.9839 
0.9875 
0.9904 
0.9927 

0.9945 
0.9959 
0.9969 
0.9977 
0.9984 

0.9988 
0.9992 
0.9994 
0.9996 
0.9997 

0.5199 
0.5596 
0.5987 
0.6368 
0.6736 

0.7088 
0.7422 
0.7734 
0.8023 
0.8289 

0.8531 
0.8749 
0.8944 
0.9115 
0.9265 

0.9394 
0.9505 
0.9599 
0.9678 
0.9744 

0.9798 
0.9842 
0.9878 
0.9906 
0.9929 

0.9946 
0.9960 
0.9970 
0.9978 
0.9984 

0.9989 
0.9992 
0.9994 
0.9996 
0.9997 

0.5219 
0.5636 
0.6026 
0.6406 
0.6772 

0.7123 
0.7454 
0.7764 
0.8051 
0.8315 

0.8554 
0.8770 
0.8962 
0.9131 
0.9278 

0.9406 
0.9515 
0.9608 
0.9686 
0.9750 

0.9803 
0.9846 
0.9881 
0.9909 
0.9931 

0.9948 
0.9961 
0.9971 
0.9979 
0.9985 

0.9989 
0.9992 
0.9994 
0.9996 
0.9997 

0.5279 
0.5675 
0.6064 
0.6443 
0.6808 

0.7157 
0.7486 
0.7794 
0.8078 
0.8340 

0.8577 
0.8790 
0.8980 
0.9147 
0.9292 

0.9418 
0.9525 
0.9616 
0.9693 
0.9756 

0.9808 
0.9850 
0.9884 
0.9911 
0.9932 

0.9949 
0.9962 
0.9972 
0.9979 
0.9985 

0.9989 
0.9992 
0.9994 
0.9996 
0.9997 

0.5319 
0.5714 
0.6103 
0.6180 
0.6844 

0.7190 
0.7517 
0.7823 
0.8106 
0.8365 

0.8599 
0.8810 
0.8997 
0.9162 
0.9306 

0.9429 
0.9535 
0.9625 
0.9699 
0.9761 

0.9812 
0.9854 
0.9887 
0.9913 
0.9934 

0.9951 
0.9963 
0.9973 
0.9980 
0.9986 

0.9990 
0.9993 
0.9995 
0.9996 
0.9997 

0.5359 
0.5753 
0.6141 
0.6517 
0.6879 

0.7224 
0.7549 
0.7852 
0.8133 
0.8389 

0.8621 
0.8830 
0.9015 
0.9177 
0.9319 

0.9441 
0.9545 
0.9633 
0.9706 
0.9767 

0.9817 
0.9857 
0.9890 
0.9916 
0.9936 

0.9952 
0.9964 
0.9974 
0.9981 
0.9986 

0.9990 
0.9993 
0.9995 
0.9997 
0.9998 
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          TABLE  B                t – DISTRIBUTION                                         

      Critical Values of the  t  Distribution α  

 

 0     αt  

   α    
v 0.10 0.05 0.025 0.01 0.005 
1 
2 
3 
4 
5 
 
6 
7 
8 
9 

10 
 

11 
12 
13 
14 
15 

 
16 
17 
18 
19 
20 

 
21 
22 
23 
24 
25 

 
26 
27 
28 
29 
inf.  

3.078 
1.886 
1.638 
1.533 
1.476 

 
1.440 
1.415 
1.397 
1.383 
1.372 

 
1.363 
1.356 
1.350 
1.345 
1.341 

 
1.337 
1.333 
1.330 
1.328 
1.325 

 
1.323 
1.321 
1.319 
1.318 
1.316 

 
1.315 
1.314 
1.313 
1.311 
1.282 

6.314 
2.920 
2.353 
2.132 
2.015 

 
1.943 
1.895 
1.860 
1.833 
1.812 

 
1.796 
1.782 
1.771 
1.761 
1.753 

 
1.746 
1.740 
1.734 
1.729 
1.725 

 
1.721 
1.717 
1.714 
1.711 
1.708 

 
1.706 
1.703 
1.701 
1.699 
1.645 

12.706 
4.303 
3.182 
2.776 
2.571 

 
2.447 
2.365 
2.306 
2.262 
2.228 

 
2.201 
2.179 
2.160 
2.145 
2.131 

 
2.120 
2.110 
2.101 
2.093 
2.086 

 
2.080 
2.074 
2.069 
2.064 
2.060 

 
2.056 
2.052 
2.048 
2.045 
1.960 

31.821 
6.965 
4.541 
3.747 
3.365 

 
3.143 
2.998 
2.896 
2.821 
2.764 

 
2.718 
2.681 
2.650 
2.624 
2.602 

 
2.583 
2.567 
2.552 
2.539 
2.528 

 
2.518 
2.508 
2.500 
2.492 
2.485 

 
2.479 
2.473 
2.467 
2.462 
2.326 

63.657 
9.925 
5.841 
4.604 
4.032 

 
3.707 
3.499 
3.355 
3.250 
3.169 

 
3.106 
3.055 
3.012 
2.977 
2.947 

 
2.921 
2.898 
2.878 
2.861 
2.845 

  
2.831 
2.819 
2.807 
2.797 
2.787 

 
2.779 
2.771 
2.763 
2.756 
2.576 
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Table C :  Percentage Points of the F distribution (
21 ,,05. vvF ) 

V1\
v2 

Degrees of freedom for the numerator  (v1) 

1             2             3             4          5            6               7           8            9           10         12           15         20          24         30           40        60           120      ∞  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 
30 
40 
60 
120 

∞
 

161.4 199.5   215.7  224.6  230.2  234.0  236.8   238.9  240.5  241.9  243.9  245.9  248.0  249.1 250.1  251.1  252.2  253.3  254.3 

18.51  19.0    19.16  19.25  19.30 19.33  19.35   19.37   19.38   19.40 19.41  19.43  19.45  19.45  19.46 19.47  19.48  19.49  19.50 

10.13  9.55    9.28    9.12    9.01   8.94    8.89     8.85     8.81     8.79   8.74    8.70     8.66     8.64   8.62    8.59   8.57   8.55     8.53 

7.71    6.94    6.59    6.39    6.26   6.16    6.09     6.04     6.00     5.96   5.91    5.86     5.80     5.77   5.75    5.72   5.69   5.66    5.63 

6.61    5.79    5.41    5.19    5.05   4.95    4.88     4.82     4.77     4.74    4.68   4.62     4.56     4.53   4.50    4.46   4.43   4.40    4.36 

5.99    5.14    4.76    4.53    4.39   4.28    4.21     4.15     4.10     4.06    4.00   3.94     3.87     3.84   3.81    3.77   3.74   3.70    3.67 

5.59    4.74    4.35    4.12    3.97   3.87    3.79     3.73     3.68     3.64    3.57   3.51     3.44     3.41   3.38    3.34   3.30   3.27    3.23 

5.32    4.46    4.07    3.84    3.69   3.58    3.50     3.44     3.39     3.35    3.28   3.22     3.15     3.12   3.08    3.04   3.01   2.97    2.93 

5.12    4.26    3.86    3.63    3.48   3.37    3.29     3.23     3.18     3.14    3.07   3.01     2.94     2.90   2.86    2.83   2.79   2.75    2.71 

4.96    4.10    3.71    3.48    3.33   3.22    3.14     3.07     3.02     2.98    2.91   2.85     2.77     2.74   2.70    2.66   2.62   2.58    2.54 

4.84    3.98    3.59    3.36    3.20   3.09    3.01     2.95     2.90     2.85    2.79   2.72     2.65     2.61   2.57    2.53   2.49   2.45    2.40 

4.75    3.89    3.49    3.26    3.11   3.00    2.91     2.85     2.80     2.75    2.69   2.62     2.54     2.51   2.47    2.43   2.38   2.34    2.30 

4.67    3.81    3.41    3.18    3.03   2.92    2.83     2.77     2.71     2.67    2.60   2.53     2.46     2.42   2.38    2.34   2.30   2.25    2.21 

4.60    3.74    3.34    3.11    2.96   2.85    2.76     2.70     2.65     2.60    2.53   2.46     2.39     2.35   2.31    2.27   2.22   2.18    2.13 

4.54    3.68    3.29    3.06    2.90   2.79    2.71     2.64     2.59     2.54    2.48   2.40     2.33     2.29   2.25    2.20   2.16   2.11    2.07 

4.49    3.63    3.24    3.01    2.85   2.74    2.66     2.59     2.54     2.49    2.42   2.35     2.28     2.24   2.19    2.15   2.11   2.06    2.01 

4.45    3.59    3.20    2.96    2.81   2.70    2.61     2.55     2.49     2.45    2.38    2.31    2.23     2.19   2.15    2.10   2.06   2.01    1.96 

4.41    3.55    3.16    2.93    2.77   2.66    2.58     2.51     2.46      2.41   2.34    2.27    2.19     2.15   2.11    2.06   2.02   1.97    1.92 

4.38    3.52    3.13    2.9 0   2.74   2.63    2.54     2.48     2.42      2.38   2.31    2.33    2.16     2.11   2.07    2.03   1.98   1.93   1.88 

4.35    3.49    3.10    2.87    2.71   2.60    2.51     2.45     2.39      2.35    2.28    2.20   2.12     2.08   2.04    1.99   1.95   1.90   1.84 

4.32    3.47    3.07    2.84    2.68   2.57    2.49     2.42     2.37      2.32    2.25    2.18   2.10     2.05   2.01    1.96   1.92   1.87   1.81 

4.30    3.44    3.05    2.82    2.66   2.55    2.46     2.40     2.34      2.30    2.23    2.15   2.07    2.03    1.98    1.94   1.89   1.84   1.78 

4.28    3.42    3.03    2.80    2.64    2.53   2.44     2.37     2.32      2.27    2.20    2.13   2.05   2.01     1.96    1.91   1.86   1.81   1.76 

4.26    3.40    3.01    2.78    2.62    2.51   2.42     2.36     2.30      2.25    2.18    2.11   2.03   1.98     1.94    1.89   1.84   1 79   1.73 

4.24    3.39    2.99    2.76    2.60    2.49   2.40     2.34     2.28      2.24    2.16    2.09   2.01   1.96     1.92    1.87   1.82   1.77    1.71 

4.23    3.37    2.98    2.74    2.59    2.47   2.39     2.32     2.27      2.22    2.15    2.07   1.99    1.95    1.90    1.85    1.80   1.75   1.69 

4.21    3.35    2.96    2.73    2.57    2.46   2.37     2.31     2.25      2.20    2.13    2.06   1.97    1 93    1.88    1.84    1.79   1.73   1.67 

4.20    3.34    2.95     2.71   2.56    2.45   2.36     2.29     2 .24     2.19    2.12    2.04   1.96    1.91    1.87    1.82    1.77    1.71   1.65 

4.18    3.33    2.93     2.70   2.55    2.43   2.35     2.28     2.22      2.18    2.10    2.03   1.94    1.90    1.85    1.81    1.75    1.70   1.64 
4.17    3.32    2.92     2.69   2.53    2.42   2.33     2.27     2.21      2.16    2.09    2.01   1.93     1.89   1.84    1.79    1.74    1.68   1.62 
4.08    3.23    2.84     2.61   2.45    2.34   2.25     2.18     2.12      2.08    2.00    1.92   1.84     1.79   1.74    1.69    1.64    1 58   1.51 
4.00    3.15    2.76     2.53   2.37    2.25    2.17    2.10     2.04      1.99    1.92    1.84   1.75     1.70   1.65    1.59    1.53    1.47   1.39 
3.92    3.07    2.68     2.45   2.29    2.17    2.09    2.02     1.96      1.91    1.83    1.75   1.66     1.61   1.55    1.55    1.43    1.35   1.25 
3.84    3.00    2.60     2.37   2.21    2.10    2.01    1.94     1.88      1.83    1.75    1.67   1.57     1.52   1.46    1.39    1.32    1.22   1.00 
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Table D : Percentage of Points of the F Distribution  (
21,,10. vvF ) 

V1\V2 

_____ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 
40 
60 
120 
∞  

1           2         3         4         5         6        7           8       9         10         12       15        20     24           30     40     60    120      ∞  

_______________________________________________________________________________________________________ 

39.86  49.50  53.59  55.83  57.24  58.20  58.91  59.44  59.86  60.19   60.71  61.22  61.74  62.00  62.26  62.53  62.79 63.06   63.33 

8.53    9.00    9.16    9.24    9.29    9.33    9.35    9.37    9.38    9.39     9.41    9.42   9.44    9.45     9.46    9.47   9.47    9.48     9.49 

5.54    5.46    5.39    5.34    5.31    5.28    5.27    5.25   5.24     5.23     5.22    5.20   5.18    5.18     5.17    5.16   5.15    5.14     5.13 

4.54    4.32    4.19    4.11    4.05    4.01    3.98    3.95    3.94    3.92     3.90    3.87   3.84    3.83     3.82    3.80   3.79    3.78     3.76 

4.06    3.78    3.62    3.52    3.45    3.40    3.37    3.34   3.32     3.30     3.27    3.24   3.21    3.19     3.17    3.16   3.14    3.12     3.10 

3.78    3.46    3.29    3.18    3.11    3.05    3.01    2.98   2.96     2.94     2.90    2.87   2.84    2.82     2.80    2.78   2.76     2.74    2.72 

3.59    3.26    3.07    2.96    2.88    2.83    2.78    2.75   2.72     2.70     2.67    2.63   2.59    2.58     2.56    2.54   2.51     2.49    2.47 

3.46    3.11    2.92    2.81    2.73    2.67    2.62    2.59   2.56     2.54     2.50    2.46   2.42    2.40     2.38    2.36    2.34    2.32    2.29 

3.36    3.01    2.81    2.69    2.61    2.55    2.51    2.47   2.44     2.42     2.38    2.34   2.30    2.28     2.25    2.23    2.21    2.18    2 .16 

3.29    2.92    2.73    2.61    2.52    2.46    2. 41   2.38   2.35     2.32     2.28    2.24   2.20    2.18     2.16    2.13     2.11    2.08    2.06 

3.23    2.86    2.66    2.54    2.45    2.39    2.34    2.30   2.27     2.25     2.21    2.17   2.12    2.10     2.08    2.05     2.03    2.00    1.97 

3.18    2.81   2 .61    2.48    2.39    2.33    2.28    2.24    2.21    2.19     2.15    2.10    2.06   2.04     2.01    1.99     1.96    1.93    1.90 

3.14    2.76   2.56     2.43    2.35    2.28    2.23    2.20    2.16    2.14     2.10    2.05    2.01   1.98     1.96    1.93     1.90    1.88    1.85 

3.10    2.73   2.52     2.39    2.31    1.24    2.19    2.15    2.12    2.10     2.05    2.01    1.96   1.94     1.91    1.89     1.86    1.83     1.80 

3.07    2.70   2.49     2.36    2.27    2.21    2.16    2.12    2.09    2.06     2.02    1.97    1.92   1.90     1.87    1.85      1.82   1.79     1.76 

3.67    2.67   2.46     2.33    2.24    2.18    2.13    2.09    2.06    2.03     1.99    1.94    1.89   1.87     1.84    1.81      1.78   1.75     1.72 

3.03    2.64   2.44     2.31    2.22    2.15    2.10    2.06    2.03    2.00     1.96    1.91    1.86   1.84     1.81    1.78      1.75   1.72     1.69 

3.01    2.62    2.42    2.29    2.20    2.13    2.08    2.04    2.00    1.98     1.93    1.89    1.84   1.81     1.78    1.75      1.72   1.69     1.66 

2.99    2.61    2.40    2.27    2.18    2.11    2.06    2.02    1.98    1.96     1.91    1.86    1.81   1.79     1.76    1.73      1.70   1.67     1.63 

2.97    2.59    2.38    2.25    2.16    2.09    2.04    2.00    1 .96   1.94     1.89    1.84    1.79   1.77     1.74    1.71      1.68   1.64     1.61 

2.96    2.57    2.36    2.23    2.14    2.08    2.02    1.98    1.95    1.92     1.87    1.83    1.78    1.75    1.72     1.69     1.66   1.62     1.59 

2.95    2.56    2.35    2.22    2.13    2.06    2.01    1.97    1.93    1.90      1.86   1.81    1.76    1.73    1.70     1.67     1.64   1.60     1.57 

2.94    2.55    2.34    2.21    2.11    2.05    199     1.95    1.92    1.89      1.84   1.80    1.74    1.72    1.69     1.66     1.62   1.59     1.55 

2.93    2.54    2.33    2.19    2.10    2.04    1.98    1.94    1.91    1.88      1.83   1.78     1.73   1.70    1.67     1.64      1.61   1.57    1.53 

2.92    2.53    2.32    2.18    2.09    2.02    1.97    1.93    1.89    1.87      1.82   1.77     1.72   1.69    1.66     1.63      1.59   1.56    1.52 

2.91    2.52    2.31    2.17    2.08    2.01    1.96    1.92    1.88    1.86      1.81   1.76     1.71   1.68    1.65     1.61      1.58   1.54    1.50 

2.90    2.51    2.30    2.17    2.07    2.00    1.95    1.91    1.87    1.85      1.80   1.75     1.70   1.67    1.64     1.60      1.57   1.53   1.49 

2.89    2.50    2.29    2.16    2.06    2.00    1.94    1.90    1.87    1.84      1.79   1.74     1.69   1.66     1.63     1.59     1.56   1.52   1.48 

2.89    2.50    2.28    2.15    2.06    1.99    1.93    1.89    1.86    1.83      1.78   1.73     1.68    1.65    1.62     1.58     1.55    1.51   1.47 

2.88    2.49    2.28    2.14    2.03    1.98    1.93    1.88    1.85    1.82      1.77   1.72     1. 67   1.64    1.61     1.57     1.54    1.50   1.46 
2.84    2.44    2.23    2.09    2.00    1.93    1.87    1.83    1.79    1.76      1.71   1.66     1.61    1.57    1.54      1.51    1.47    1.42   1.38 
2.79    2.39    2.18    2.04   1.95     1 87    1.82    1.77    1.74     1.71     1.66    1.60    1.54    1.51    1.48       1.44    1.40   1.35   1.29 
2.75    2.35    2.13    1.99   1.90     1.82    1.77    1.72    1.68     1.65     1.60   1.55     1.48    1.45    1.41      1.37    1.32    1.26   1.19 
2.71    2.30    2.08    1.94   1.85     1.77    1.72    1.67    1.63     1.60     1.55   1.49     1.42    1.38    1.34       1.30   1.24    1.17   1.00                
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Table E  :  Statistical Constants for X  and R Control Charts 
 

n A2 D3 D4 d2 
2 1.880 0 3.268 1.128 
3 1.023 0 2.574 1.693 
4 0.729 0 2.282 2.059 
5 0.577 0 2.114 2.326 
6 0.483 0 2.004 2.534 
7 0.419 0.076 1.924 2.704 
8 0.373 0.136 1.864 2.847 
9 0.337 0.184 1.816 2.970 
10 0.308 0.223 1.777 3.078 
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