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Preface

This course is an introduction to Statistical Methods for Data Collection,
Analysis and Validation With hands on training & case study and it aims to
provide you to carry out statistical analysis of simple data smtsl an
exposure to use commonly available computer software packabes.
development of such packages has made it much easier for everyone to
apply statistics to their observations of the world.

The theory presentedin the lectureswill be supportedby a series of
tutorials/computerpractical and casestudies.Thesewill put into practice
what you have learned in tiectures. You shall be given a set of exercises
each day which will be completedoutside of the practical hour when
necessary.Most of the exerciseswill be basedon calculationsthat canbe
donewithout the aid of a computer;the answersto theseproblemswill be
discussed in the tutorial sessions.

After attending this course, wmpethat the participants will be abie:
» do some basic statistical analysis of data.
* have the confidence to apply the techniques studied and perhaps

slightly more advanced techniques.

January 19, 2021 S K Neogy
Professor I Course Coordinator
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CHAPTER -1

INTRODUCTION TO ENVIRONMENTAL STATISTICS

Environmental statistics is a branch ofistias, which has developed
rapidly over the past 10-15 years, in responsentanareasing concern
among individuals, organizations and governments footecting the
environment. It differs from other applicationspitts (e.g. industrial
statistics, medical statistics) in the very widega of emphases, models and
methods needed to encompass such broad fieldsnasrgation, pollution,
evaluation and control, monitoring of ecosystemanagement of resources,
climate change, the greenhouse effect, forestberiss, agriculture and
food. It is also placing demands on the statetisi to develop new
approaches or new methods (e.g. for sampling whesergations are
expensive or elusive or when we have specific midron to take into
account) as well as to adapt the whole range ofbtiegi statistical
methodology to the challenges of the new envirortaletiields of
application.

Environmental statistics is indeed becoming a majigh-profile, identified
theme in most of the countries where statisticallyemis and research are
constantly advancing our understanding of the wasdlive in. Its growing
prominence is evident in a wide range of relevanpleases throughout the
world.

Other expressions of concern for environmentaissted are found in the
growing involvement of national statistical soasti such as the Royal
Statistical Society in the UK and the American iStedal Association, in

featuring the subject in their journals and in thaiganizational structure.
Other nations also express commitment to the cading study of the

environmental change networks and with governmentebntrols and

standards on environmental emissions and effeckdany universities

throughout the world are identifying environmensshtistics within their

portfolios of applications in statistical researetiucation and training.

Of course, concern for quantitative study of enwnental issues is not a
new thrust. This is evidenced by the many indiglduand organizations



that have for a long time been involved in all (iting the statistical)

aspects of monitoring, investigating and propospuaiicy in this area.

These include health and safety organizations;dstas bodies; research
institutes; water and river authorities, meteoralagorganizations; fisheries
protection agencies; risk, pollution, regulatiord arontrol concerns, and so
on.

Such bodies are demanding more and more providicsound statistical

data, knowledge and methods at all levels (fromcbdata collection and

sampling to specific methodological and analyticogedures). The

statistician is of course ideally placed to repn¢sbe issues of uncertainty
and variation inevitably found in all environmenpabblems. An interesting
case in point was in relation to the represematd uncertainty and

variation in the setting of environmental pollutistandards.

Environmental statistics is thus taking its placesides other directed
specialties; medical statistics, econometrics, ustidal statistics,
psychometrics, etc. It is identifying clear field$ application, such as
pollution, utilities, quality of life, radiation lzard, climate change, resource
management, and standards. All areas of statistisadeling and
methodology arise in environmental studies, buti@alar challenges exist
In certain areas such as official statistics, spaind temporal modeling and
sampling. Environmentally concerned statisticiamsst be pleased to note
the growing public and political acceptance of theble in the
environmental debate.

Many areas of statistical methodology and modefing application in

environmental problems. Particular modern samptmreghods have special
relevance and potential in many fields of environtak study ; they are
important in monitoring and in standard settingor Example, ranked-set
sampling aims for high efficiency inference, wheteservational data are
expensive, by exploiting associated (concomitafteno‘expert-opinion’)

information to spread sample coverage. Composataping seeks to
identify rare conditions and from related inferenegain where sampling is
costly and where sensitivity issues arise, whildaptive sampling for

elusive outcomes and rare events modifies the sagpbkcheme

progressively as the sample is collected.



Other topics such as size-biasing, transect sagq@ind capture-recapture
also find wide application in environmental studies

Time-series methods have been widely applied andeldeed for
environmental problems but more research is neededbn-stationary and
multivariate structures, on outliers and on norapsatric approaches. We
will start our study of environmental statistics dynsidering briefly some
practical examples, from different fields. Inghfive days programme we
will be examining how statistical principles and thaxls can be used to
study environmental problems. Our concern wilbivected to :

» Data collection, monitoring and representation;
» Drawing inferences about important characterisifiahie problem;
» Using statistical methods to analyze data anddgalicy and action.

* Probabilistic and statistical models;

The principles and methods will be applicable te tomplete range of
environmental issues (including pollution, conséorg management and
control, standards, sampling and monitoring) acadisBelds of interest and
concern (including air and water quality, forestrgdiation, climate, food,
noise, soil condition, fisheries, and environmestahdards).

Any models or methods applicable to situations iming uncertainty and
variability will be relevant in one guise or anath® the study and
interpretation of environmental problems and whius be part of the
armoury of environmental statistics or environnwstri Environmental
statistics is a vast subject. In an article injthenal Environmetrics, Hunter
(1994) remarked: Measuring the environment is amsawwe challenge,
there are so many things to measure, and at so timaey and places. But,
however awesome, it must be faced! The recentblighed four-volume
Encyclopedia of Environmetrics (El-Shaarawi andgBrech, 2002) bears
witness to the vast coverage of our theme and widespread following.



As we enter the new millennium the world is in i&ris in SO many respects
we are placing our environment at risk and nottregairgently enough to
reverse the effects.

» The average European deposits in a lifetime a mentiraf waste
amounting to about 1000 times body weight, the ayerNorth
American achieves four times this.

» Sea-floor sediment deposits around the UK averdifi 2tems of
plastic debris per square metre.

* Over their lifetime, each person in the Westernlavas responsible
for carbon dioxide emissions with carbon contentamerage 3500
times the person’s body weight.

The problem of acid rain, accumulation of greenkogmses, climate

change, deforestation, disposal of nuclear wastdyats, nitrate leaching,
particulate emissions from diesel, fuel, pollute@ams and rivers, etc., have
long been crying out for attention. Ecological cems and commercial

imperatives sometimes clash when we try to dealh vihe serious

environmental issues. Different countries shovied#nt degrees of resolve
to bring matters under control; carbon emissioraisase in point, with

acclaimed wide differences of attitude and pratteween, for example,

the United States and the European Union. Enviemah scientists, and

specialists from a wide range of disciplines, aneersed in efforts to try to

understand and resolve the many environmental @nabive face.

Playing a major role in these matters are thessi@ans, who are uniquely
placed to represent the issues of uncertainty andtion inevitably found in
all environmental issues. This is vital to thenfotation of models and to
the development of specific statistical methods t€oerstanding and
handling such problems.



CHAPTER -2

ENVIRONMENTAL DATA QUALITY MANAGEMENT
INTRODUCTION

This chapter discusses evolution of the environmental data quality model by
evaluating the relationship between data quality and decision quality, and by
disinguishing analytica quality from data quality. A ° ‘next-
generation’ ° data quality model can create the framework needed for
explicitty managing both data and decison uncertainties using new
strategies to produce greater decision confidence ( © ‘better’ ° ), while
simultaneously shortening project lifetimes ( © ‘faster’ ’ ) and cutting
overal project costs ( © ‘cheaper’ ’ ) more than ever before possible .

“QUALITY” AS A POLICY GOAL”

Exhortations for “ ‘sound science’ ° and ° ‘better quality data’ ’
within the context of regulatory environmental decison making are
increasingly popular. Is the current data quality model sufficient to achieve
sound science? Is ° ‘data quality’ ° really the key issue, or is there
something more fundamental at stake?

< < b

Data quality’ is too often viewed as some independent standard
established by outside arbiters independent of how the data will actually be
used. Project managers tend to follow a checklist of ° ‘approved’ ’
anaytical methods as the primary means of achieving “ ‘data quality.
Yet, striving for  © “high quality data under the current model has
proven to be an expensive and sometimes counterproductive exercise.

> >
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In contrast to checklist approachesto ‘ ‘data quality,” *~ sound science
in regulatory and project decision-making is achieved by acknowledging and
managing decison uncertainty. Correspondingly, acceptable data quality is
achieved by managing all aspects of data uncertainty to the degree needed to
support the decisions for which the data are intended. Managing uncertainty,
either of decisions or of data, requires careful planning using relevant
expertise and technica skills. Calls for ° ‘sound science’ =  and
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better data quality’ ° are meaningless without a simultaneous
commitment to include scientifically qualified staff when planning science-
based programs and projects. Environmental programs exist because there is
work that must be done at the project level. Policy-makers that desire to see
sound science in environmenta decisions need to provide a coherent vision
that will steer the

development of program infrastructure that focuses on managing decision
guality at the project level.

It isamistake to assume that scientific data are (or can be) the only basis for
regulatory decison-making. Science may be able to provide information
about the nature and likelihood of consequences stemming from an action,
but the decision to pursue or rgect that action (i.e., accept or reject the risk
of conseguences) based on scientific information is within the province of
values, not science. Even the choice of how much uncertainty is tolerable in
statistical hypothesis testing lies in the realm of vaues. Thus, it is
appropriate that many nonscientific considerations feed into a regulatory
decison-making process. This does not invalidate a foundation of
‘ ‘sound science’ ’  as long as the various roles of science and values
are differentiated, and any underlying assumptions and other uncertainties in
both data and decision making are openly declared with an understanding of
how decision making could be affected if the assumptions were erroneous.

DECISION QUALITY AS DEFENSIBILITY

Theterm ° ‘decision quality’ ° impliesthat decisions are defensible (in
the

broadest scientific and legal sense). Ideally, decison quality would be
equivalent to the correctness of a decision, but in the environmental field,
decision correctness is often unknown (and perhaps unknowable) at the time
of decison-making. When knowledge is limited, decision quality hinges on
whether the decison can be defended against reasonable challenge in
whatever venue it is contested, be it scientific, legal, or otherwise. Scientific
defensibility requires that conclusions drawn from scientific data do not
extrapolate beyond the available evidence. If scientific evidence is
insufficient or conflicting and cannot be resolved in the allotted time frame,
decision defensbility will have to rest on other considerations, such as
economic concerns or political sengtivities. No matter what considerations
are actually used to arrive at a decision, decision quality (i.e., defensibility)



implies there is honest and open acknowledgment and accountability for the
full range of decison inputs and associated uncertainties impacting the
decision making process.

FIRST-GENERATION STEPPING-STONES THAT BECAME STUMBL ING
BLOCKS

When immediate action is desired, but knowledge and expertise are not yet
sufficient to plot the smartest plan of attack, a reasonable tactic isto initially
create a consistent, process-driven strategy based on the best available
information so everyone can ° ‘sing from the same sheet of music’ ’
while experience and knowledge are being accumulated. Certainly this made
sense for the emerging cleanup programs. To be consistent with sound
science, however, such a process-driven approach should be openly
acknowledged by all participants as the first approximation that it is, with
the understanding that one-size-fits-all oversimplifications will be discarded
in favor of more scientifically sound information as it becomes available.
Although science may be comfortable viewing first approximations as short-
lived stepping-stones subject to continual improvement and revision, this
view is less welcome when economic and litigious forces intersect with
broader societal goals in a regulatory crucible. This is one of the
fundamental conflicts faced

by policy makersseeking ° ‘sound science’ ~ asabasis for regulation.

EVOLVING A SECOND-GENERATION DATA QUALITY MODEL

To set the stage for an updated data quality model, we must clarify the term
‘ ‘data quality.” ° Data quality is ° ‘the totality of features and
characteristics of
data that bear on its ability to meet the stated or implied needs and
expectations of the user/customer’ ’ What data users “ ‘need,” ’
ultimately, is to make the correct decisions. Therefore, data quality cannot
be viewed according to some arbitrary standard, but must be judged
according to its ability to supply information that is representative of the
particular decision that the data user intends to make. Said in a different
way, anything that compromises data representativeness compromises data
guality, and data quality should not be assessed except in relation to the
intended decision. The assumptions of the current data generation model and



routine application of this mode to environmental decision-making for site
cleanup

are inadequate to ensure that data are representative of the site decisions
being made. The root cause of data non-representativeness is the fact that
environmental data are generated from environmental samples (i.e.,
specimens) taken from highly variable and complex parent matrices (such as
soils, waste piles, dudges, sediments, groundwater, surface water, waste
waters, soil gas, fugitive airborne emissions, etc.). This fact has severd
repercussions:

1. The concept of representativeness demands that the scale (spatial,
temporal, chemical speciation, bioavailability, etc.) of the supporting
data be the same (within tolerable uncertainty bounds) as the scale
needed to make the intended decisions (does unacceptable risk exist
or not; how much contamination to remove or treat; what treatment
system to select; what environmental matrix to monitor; what analytes
to monitor for; where and how to sample; etc.).

2. The concept of representativeness can be coarsaly broken into sample
representativeness and analytical representativeness, both of which
are critical to managing data uncertainties:

» Sample representativeness includes procedures related to specimen
selection, collection (i.e, extraction from the parent matrix),
preservation, and subsampling (although this is often included with

* ‘analytical’ ’ since it typicaly takes place in the lab). All are
crucia to data quality, but the representativeness of specimens is
difficult to ensure without sufficient sampling density to understand
the scale and characteristics of matrix heterogeneities. Even perfectly
accurate analysis is no guarantee of good data quality if the sample
were not representative of the properties of concern to the decision-
maker. Since many environmental matrices are highly heterogeneous
on many different scales that affect contaminant concentration and
behavior in analytical and biotic systems, most of the uncertainty in
most of today’ s site data stems from the sampling side, although
Inaccurate analysis certainly can (and do) occur.

* Analytical representativeness involves selecting an analytical method
that produces test results that are representative of the decision.
Causes of analytica non-representativeness include selecting the
wrong method or erroneoudly interpreting method results Analytical



representativeness is compromised when matrix interferences degrade
method performance to the point where erroneous decisions would be
made if the data were not recognized as suspect. If interferences are
found, sound science demands that method modification or an
alternate method be used to compensate.

In contrast to the assumptions that underlie the current data quality model, a
second-generation data quality model for the environmental field will
explicitly recognize that:

Data quality is an emergent property arising from the interaction
between the attributes of the anaytica data (such as its bias,
precision, detection and quantitation limits, and other characteristics
that together contribute to data uncertainty) and the intended use of
the data (which is to assist managing decision uncertainty).

Data uncertainty is comprised of both sampling and analytical
uncertainties.

Analytical uncertainty in a test result arises from both the analytical
uncertainty of the measurement method itself and from interaction
between the sample matrix and the analytical process. The analytical
uncertainty arising from the method itself is only a fraction (and often
anegligibly small fraction) of the overall data uncertainty.

Sampling uncertainty accounts for the majority (and in some
situations, nearly all) of the data uncertainty. This uncertainty can be
managed by increasing the sampling density and/or by targeting
sampl e collection designs to yield the most valuable information (i.e.,
gather more data where decisions are more uncertain, such as
boundaries between ‘ ‘clean” ’ and ° ‘dirty’ ° areas, and less
data where there decisions are more certain, such as obvioudy
“ ‘clean” °  or obvioudy ¢ ‘dirty’ ' areas). Sample
representativeness requires that all aspects of sampling design be
matched to the scale of decision-making.

Procedures to estimate and report data uncertainties (e.g., uncertainty
intervals) to the data user need to be developed for the environmental
field.

Investment in properly educated and experienced technical staff isa
necessary and cost-effective means to achieve data quality and good
science where numerous complex and interacting variables must be
evaluated and balanced.



CHAPTER -3

DATA COLLECTION, SUMMARISATION AND
PRESENTATION OF ENVIRONMENTAL DATA

Introduction

Many time, we are tempted to exercise controb&e tdecisions on the basis
of our experience, impression or intuition. If were lucky we might be
rewarded with expected results - otherwise we fdihe risk involved in
such exercises can be controlled/minimized onlyough systematic
collection of data and their analysis where data memerical expression of
the characteristics of an activity or process. Tdravironmental data
components are presented in the following diagram

Collect Data
Finding
Compile Data
Understanding Assessing Treat Data
Sharing

Disseminate Data

Environmental Data Components
Type of Environmental Data:
Data are of two categories : (i) routine ; (ii) siaé
Routine data are collected for monitoring of airality, monitoring the

benzene level, evaluating the water quality statfisYamuna river,
assessing hazardous wastes etc. Special data mehtollected for
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investigating chronic problems or for studies imnad experimentation for
improvement purpose. Whatever be the type of de¢amust follow some
cardinal principles while collecting data.

Attribute and Variable Data

There are two types of data — the Attribute type e Variable type. In the
attribute type the characteristic consideredoismeasurable. It only gives
a comparative view of the characteristic of indereFor example good, bad
or worse, whereas the variable type of charetieis measurable. For
example if temperature, the characteristic them ithportance of the
characteristic is given by a numerical value sa}C5& one time point and
say 52C at another time point.

1. Have a clearly defined objective

Remember that data are meant for ACTION. Befolkeciing data, it is
important to determine which charateristic is ®odonsidered. Next, what
we are going to do with the data. Both short tard long term objectives
are to be kept in mind. It is no use collectingadahich are not utilized at
all. Collecting of data costs money. A balancs teabe struck between the
cost and the worth of the information for action.

2. Collecting data to suit the purpose

Once the objective for collecting data is definteg types of comparison
which need to be made are also determined, andnthign identifies the

type of data, time interval which should be colkect Suppose we are
interested in assessing the variability in certaharacteristic. If only one
observation is collected per day, it is impossibleetermine the variability
which occurs in a day.

3. Ensure reliability of measurements
Data are input for decisions made by an orgamrzatin view of the impact

it makes, it is absolutely essential that the bditgy of data is ensured.
Unreliability of data might result from deliberasttempts to conceal true

11



facts or ignorance. In one chemical process imgutte inprocess wastage
figures were being under-reported only to showrttamagement that targets
are being met. In another case for acceptance lsgmpurposes, an
inspector was reporting the average of measuremesdsed on varying
sample size at his discretion and using such mesidt determining
acceptability of the product supplied by a vendadhis was a violation of
the stipulated procedure to follow the samplingipla

4. Decide the subsequent treatment of data

Once some data are collected, it is necessary dolelén advance how to
present or summarize the data and what kind ofsstati analysis to

perform so that meaningful inferences can be drd@maction. The

responsibility at all the stages of data collectipmesentation, analysis,
reporting and action is also to be simultaneoustgdi The paper work
system needs proper planning to make it effective.

5. Find right ways to record data

While collecting data it is necessary to arrange tlata neatly so that
subsequent processing is facilitated. Relevamdildesuch as day of the
week, hour of the day, inspector, measuring inséninused etc. needed to
be recorded properly. The frequency of data catidoeed keeping in view
the purpose, cost of data collection, data-procgs$acility and the
availability of relevant resources. It is importdor the data to be capable
of being collected in a simple way and in a formialihis easy to use.
Appropriate data-sheet or proforma or check-shastth be designed. So
that data recording becomes easy and the datarareggad automatically so
that they can be easily taken on for further prsicgs

Tools and Technigues for looking at data

The following techniques are commonly used foriprglary analysis.
. Check Sheet
. Pareto Analysis

1

2

3. Brain storming

4. Ishikawa Diagram or Cause and Effect Diagram

12



5. Scatter Diagram and Regression Analysis
6. Stratification
7. Histogram

Some of these technigues have been discussedsirchiapter and some
others have been discussed in the following chapte

Check Sheet

To collect data check sheets are used. This tei easy collection,
summarization and analysis of data. It can be usethe following
functions: (a) vital items check (c) problem lacatchecks (d) problem
cause checks

Pareto Analysis

Whenever any problem related to pollution or cegtiken up to investigate
the ways of improvement, the first task usuallytasnarrow down the
problem area so that the problem becomes easibaridle and the root
causes of the maladies are identified quickly. téraately there is a natural
law which almost always ensures that a relatively bf the contributors
account for the bulk of the problem.  This isreggtion of “vital few and
trivial many" contributors is known as PARETO ANAISYS, a term coined
by Dr. J.M. Juran.

Procedure for making Pareto Chart
Step 1 Decide what items are to be investigated and tocoollect data.

(1) Decide what kind of data you want to investgator example,
the problem of hazardous waste in Noida or Ghadiad&a,
amount of loss in monetary terms, number of custome
complaints etc.

(i) Decide how to classify the data. For exampig,the type of
defect, location, process, machine, worker, metatd, if the
necessary record items appearing infrequently utiseeheading
“others".

13



(iii) Determine the method of collecting the datadahe period for
which it is to be collected.

Step 2 Design a data tally sheet listing the items gjplace to record their
totals.

Step 3 Fill in the tally sheet and calculate the tstal

Step 4 Make a Pareto chart data sheet listing thegtaheir individual
totals, cumulative totals, percentages of overatalf and cumulative
percentage.

Step 5 Arrange the items in order of quantity andlifil the data sheet.
The item others” should be placed in the last, noevmatter how large it is
because it is composed of a group of items eagvhah is smaller then the
smallest item listed individually.

Step 6 Draw two vertical axes and a horizontal axi$ark the left hand
vertical axis with a scale from 0% to 100%. Theizantal axis is to be
divided into a number of equal intervals, equaltite number of items
investigated.

Step 7 Construct a bar chart with bars over the walksrcorresponding to
each item. The height of each bar is proportidnathe corresponding
frequency.

Step 8 Draw the cumulative curve (Pareto Curve) byrkimg the
cumulative percentage points above the right hatervals of each item,
and connecting the points by a solid line.

Step 9 Write other relevant information on the ¢hso that it becomes
self-explanatory.

Pareto Analysis of the number of persons affediggito different types of
hazardous waste in a city is shown next.

14



Exercise: Make Pareto Analysis of types of hazardous wasta city.

Table : Data Tally Sheet

Sl.No. Type of Tally Frequency
hazardous (no. of person
waste in thousands)
1 A |TH\[U| 10
2 B [ SUNHTINTTRS TSN T 1 42
3 C W |
4 D PHINUNI IHCHUNUNI LU
R I N T ST 104
E 1[I 4
o PENINI 20
7 Others YU NI 14
TOTAL 200
Table : Data Sheet for Pareto Chart
Sl Type of | Frequency | Cumulative| % Contribution | Cumulative
No. | hazardous Frequency by Type of Percentage
waste waste
1 D 104 104 52 52
2 B 42 146 21 73
3 F 20 166 10 83
4 A 10 176 5 88
5 C 6 182 3 91
6 E 4 185 2 93
7 Others 14 200 7 100
Total 200 100

15




The chart brings out very clearly that if the haloars waste is to be brought
down, we should first concentrate on type of wd3tevhich contributes
more than 50\% to the total. Such information liwiously very useful in
directing the priorities of the study.

The information obtained through Pareto analysi€mwipresented in the
form of a chart is known as PARETO CHART. Dr. Jumas the first to

use the concept introduced by the Italian economid?areto who showed
that the largest share of income or wealth is bglé much smaller number
of people.

Cumulative
Frequency (%)
Frequency = 100
90
80
70
120 60
100 50
8( 40
6( 30
4( 20
2( 10
0 0
Type —» D B F A C EOthers

Pareto Chart by Effect

16



This is a chart concerning poor performance andésl to find out what
the major problem is. This performance may beedlto :

I.  Quality : faults, failures, complaints, retudngems, repairs, recovery
etc.
ii. Cost:amount of loss, expenses
ii.  Delivery : Stock, Shortage, defaults in payrteemelays in delivery.
iv. Safety : Accidents, Mistakes, Breakdowns
Brain Storming And Ishikawa Diagram

Any problem we take up for study normally involvaslarge number of
factors originating from different departments loé torganization. One or a
few persons may not have complete knowledge ahbilteapossible causes
or factors which contribute to the problem. Aslsutis necessary to
conduct a group exercise wherein all concernedkawaviedgeable people
must sit together and discuss. Such an exerciggomn as brain storming.
This will help us to prepare a complete list of taetors involved in any
experiment.

The list of factors can be presented in tabulamfor However, a most
comprehensive way of presentation is a pictoriald@grammatic form
known as the Ishikawa Diagram.

Cause & Effect Diagram (Ishikawa Diagram)

In order to achieve the goal of “"making right finst time". It is necessary
that we understand the root cause which creatprttdems. The cause of
poor air quality or water quality may be attribditi®e a number of factors
depending upon the complexity of the problem, andaase-and-effect
relationship can be found among those factors. régghed individually,
different people might offer different explanaticasto the root causes. But
jointly we can determine structure of a multipleisa and effect relation by
observing it systematically. It is difficult to Ise complicated problems
without considering this structure which consistsacchain of causes and
effects, and a CAUSE & EFFECT DIAGRAM is a methddegpressing it
simply and easily.

In 1953 Prof. K. Ishikawa of Tokyo University summzad the opinions of
engineers at a plant in the form of a {Cause & &ffBiagram} as they

17



discussed a quality problem. This was the firaetithis approach was used.
Since then it proved to be quite useful in visumpthy of the relation
between the characteristics to be investigatedd the factors so that
systematically the theories could be tested and:dess developed.

The diagram is a fish-bone like structure where dhality characteristic

having problem is indicated by the horizontal mamow (backbone) and
the major factors such as Materials, Methods, Mad, Machines etc. which

contribute primarily to the causes of the problesns represented in the
form of slanting arrows meeting the main arrow frthha top or bottom. The
secondary causes of each primary causes are iaditiatough horizontal

small arrows meeting the arrows for primary cau3é® causes are listed
through brain-storming sessions attended by alteored.

Procedure for making and using cause & effect diagmm

» Decide on the quality characteristic having problem

» Find as many causes as possible which are condideraffect the
guality characteristic.

» Sort out the relations among the causes and malause & effect
diagram consisting of arrows which represent thengmy and
secondary causes.

» Determine priorities of the causes for verificatarth data already
available or to be collected specially.

» Assign importance or significance to each factoediely on the
basis of data and device appropriate measures ttaridjeof the
problems.

Checkpoints for preparing cause effect diagram

s State the objective very clearly. Is it incremsior decreasing
average level of some variable characteristic ecreasing the
variability or decreasing the occurrence of somaesirable events."

% Secure participation from all concerned. The pgrdints should
express their viewpoints honestly and fearles&lyen very odd ideas
might click subsequent for solving a problem.

% Express the factors as concretely as possibletofsaexpressed in an
abstract manner only result in a cause & effecgmian based on
generalities which will not help in solving the ptem.

+ Choose measurable characteristics and factors ab ttey are
amenable to statistical verification with data.

18



+» Discover factors amenable to action. If the caumehave identified
can not be acted upon the problem will not be sblve If
improvements are to be affected, the cause shaulardken down to
the level at which they can be acted upon, othenmdentifying them

will become a meaningless exercise.

See Figure for cause and effect diagram.

People Equipmen Environment
_> JR—
Materials Methods Measurement
& Testing

Process
Variation

The measurement method must produce accurate aoderesults over

time

Not Precise

Precise

Not Accurate

Accurate
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Stratification

This is the sample selection method used when tit@eapopulation, or lot,
is made up of a complex set of different charasties, e.g. region, income,
age, race, sex, education, operators, shift, daydrethese cases the sample
must be very carefully drawing in proportions whigpresent the makeup
of the population.

Stratification involves simply collecting or dividy the set of data into
meaningful groups or strata and depicting the datdratified form so as to

bring out if the different groups are significantlfferent. Groups which

are worse than the others are singled out and ppate actions are taken to
bring them at par with the others thereby effecsignificant improvement

in the overall performance.

Scatter Diagram

Scatter diagram are used to examine the relatiprigFtween two factors to
see if they are related. If they are, then by miliig the independent
factor, the dependent factor will also be contablleFor example, if the
temperature of the process and the purity of a adamroduct are related
then by controlling temperature, the purity of gweduct is determined.
Figure illustrates use of Scatter Diagram in défersituations.

A

Process Temperature
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Figure : Scatter Diagram

Motivation:

A guantitative approach to environmental probletwiag can be broken
down into a number of steps. We assume that youvgith a qualitative
problem much like the acid rain question in thetfohapter.

1. Formulate quantitative hypotheses and questiatswill help you
address your general question or issue.

2. Determine the variables to observe.

3. Collect and record the data observations.

4. Study graphics and summaries of the collectéal adiscover and
remove mistakes and to reveal relationships betwagables.
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5. Choose a model describing the important relahgs seen or
hypothesized in the data.

6. Fit the model using the appropriate modelingégue.

7. Examine the fit using model summaries and diatjnglots.
8. Repeat steps 5-7 until you are satisfied wighrttodel.

9. Interpret the model results in light of your gead question.

Data Lnolyziz ond Display System Components

m Uzer | | Graphical
g Irterface

Outpt

—
/ "“'h.__
Com putation Spec \ Dutput Spec

Data Spec \
nmﬂ’““ﬁ"

Graphical
Rendering

Computation
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CHAPTER - 4

DESCRIPTIVE STATISTICS FOR
ENVIRONMENTAL DATA

What is Statistics?

The word ‘statistics’ is used in two senses — datd the science. The
science of statistics deals with:

Collection of data

Summarisation of data

Analysis of data, and

Drawing valid inference from data which areially subject to
variation.

PwpnE

A layman usually considers statistics in the safseData ‘ only. As was
the case with many other sciences, Statistics Iss ldeen much abused
knowing or unknowingly, by people involved in publiealings. All these
ultimately led to the comment ‘There are lies, dathhes, and statistics’.

Need for the Science Statistics:

Other than the people engaged in professionalsstati activities, it is
scientists, engineers and managers at differergldeaf manufacturing,
laboratories, or service organizations, who hantg&imum amount of data
and interpret them for decision making and actiorhe efficiency of an
organization depends upon the quality of decisi@king to a large extent.
There are many situations, where common sensepson guide when it
comes to interpretation of data. The quality afisien making on the basis
of data can improve only with the help of the sceerof statistics. Of
course, sometimes the basic problems remains, gamet talking with
facts but talking on the basis of opinions, impi@ss etc. which make the
decision making highly subjective. Typically we aneterested in a
population - a well defined groups of cases.
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Population: Collection of all elements under consideration abdut which
we are trying to draw conclusions.
Population elements may be :

* Objects;

» Entities;

e Units;

* People; .. etc

* A batch of material
Generally each case has one or more characterfaticbutes) of interest.
When a particular characteristic is measured waiolat value which varies
from case to case — hence each characteristic rmete a variable.
Recording the value of a variable for each caseuatsdo collecting data.
Sample: A subset of the elements selected from the popmatith a view
to draw inference about the population charactesistThus a sample is part

of population. The objective of statistical infece is to draw conclusions
about the population using a sample data fromgbptilation.

Data Summarisation Methods:

» Graphical Methods
e Tabular Summarisation
* Numerical Indices

Graphical Methods:

Graphic displays provide better insight that ofenot possible with words
or numbers.
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Graphical Tools:

» Bar Chart

* Pie Chart

* Run Chart

» Histogram

* Frequency Curve
» Scatter Diagram
e Control Charts

* Box Plots

* Youden Plots

Tabular Methods: Summarises data in the form of a table.

Table 1 : Concentration of benzene in 100 air sam@s$ (units in i g/m°)

3.37 [3.34 |3.38 |3.32 |3.33 |3.28 [3.34 |3.31 |3.33 |3.34

3.29 |3.36 |3.30 [3.31 | 3.33 |3.34 |[3.34 |3.36 [3.39 |3.34

3.35 [3.36 |3.30 [3.32 |3.33 |3.35 [3.35 |3.34 |3.32 |3.38

3.32 |3.37 |3.34 |[3.38 |3.36 |3.37 |3.36 [3.31 |3.33 |3.30

3.35 [3.33 |3.38 |3.37 |3.44 332 [3.36 |3.32 |3.29 |3.35

3.38 |3.39 |[3.34 [3.32 [3.30 |3.39 |3.36 [3.40 | 3.32 |3.33

3.29 | 341 |3.27 |3.36 341 |3.37 |3.36 [3.37 |3.33 |3.36

331 [3.33 |3.35 |[3.34 |3.35 |3.34 [3.31 |3.36 |3.37 |3.35

3.40 |3.35 |3.37 |3.35 |3.32 |3.36 |[3.38 |3.35 [3.31 |3.34

3.35 [3.36 |3.39 |3.31 |3.31 |3.30 [3.35 |3.33 |3.35 |3.31
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Procedure for Constructing a Frequency Distribution:

1. Decide on the number of cells.

2. Calculate the approximate cell interval. Thikiogerval equals the
largest observation minus the smallest observativided by the
number of cells. Round this results to some comvgmumber.

3. Construct the cell by listing cell boundaries.

4. Tally each observation into the appropriate. cell

5. List the total frequency of each cell.

Number of cells in frequency distribution:

Number of | Recommended

observations| number of cells
20-50 6
51-100 7
101-200 8
201-500 9
501-1000 10

Over 1000 11-20

Table 2: Frequency Table of Concentration of benzes in 100 samples :

Diameter Tally Mark Frequency | Cumulative
Frequency

3.265—3.295 | W/ 5 5
3.295—3.325 | I I MWW I 23 28
3.325—3.355 | I IW NI MWW 36 64
3.355-3.385 | IW I I I 27 91
3.385-3.415 | W /I 8 99
3.415 —3.445 |/ 1 100
Total 100
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Histogram : It is bar chart of a frequency distribution. Ighlights the
center and amount of variation in the sample oadafhe simplicity of
construction and interpretation of the histograakes it an effective tool in
the elementary analysis of data. Many problentgiality control have been
solved with this one elementary tool alone. Figurg gives the histogram
of data given in Table — 1. The following stepg arsed to construct
histogram :

1. Mark the Y — axis with frequency scale.
2. Mark the X- axis with class boundaries usirsyigable scale.

3. Draw rectangles on X — axis with base equ#héowidth of the class
interval and height equal to class frequency.

40
F L
r
e 30
q
u
e 20
n
C -
y
10—
5 R X

3.265 3.295 3.325 355 3.385 3.415 3.445

Histogram illustrates how variable data providescmunore information
than do attribute data. Centering of histograndthviof the histogram and
the shape of the histogram reflect the ability bé tprocess to meet
specification limits and presence of assignableseawf variation in the
process. Figure — 2 gives typical histograms entmed in practice.
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Frequency Polygon :

It is the line graph of class frequency againstpaidt of class interval.

Numerical Indices : Data can be summarized using

- Measures of central tendency

- Measure of dispersion
Measures of Central TendencyA value which is representative of the set
of data as most of the data is centered aroundulise. Important

measures of central tendency are Mean, Mode andaMed

Mean : Total of all the observations divided by the nembof
observations.

2 X
i
—\  Xq+Xo+ - + X i=1
Mean(X) = 2122 h =
n

X Frequency (f) Xf

X, f, X,y

X, f, X2X>

Xk fk .

Total > XX f
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Mean (X) = Xy # Xl + -+ Xy _ Zx,
fy+fy 41, Xt
Example:
Benzene | No of days (f)] Xf
Conc.
e g/m’)
25 2 50
26 3 78
27 4 108
28 3 84
29 1 29
30 2 60
Total 15 409
_ 409

Average temp.(X) = E=27'266

Mode : That value for which frequency is maximum.
Median_: It is the middle most central value when all wsare arranged by

order of magnitude. Half the values lie above Wailsie and the other half
lie below it. That is median divides the data itwo equal parts.

Steps to compute the Median:
1. Arrange all values in order of size. From desdlto largest.
2. If the number of values (n) is odd, the medsoanter value in the

(n+1)

ordered list. The location of median is obtaingatbunting———-

observations from the bottom of the list.

Consider the data set : 490, 400, 450, 420 afdat8nd the median
of this data, we first arrange the data from srsalie largest value.
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e.g. 400, 420, 430, 450, 490. The median ikerposition

(n+1) _5+1
2

=3. Therefore the median is 430.

3. If the number of observations (n) is even, tleglimn M is given by
the average of the two center observations in ttiered list. i.e for
example 70, 75, 77, 82, 88, 100, 105, 108, the amedithe average

82+88:85

of the 4" and %' value i.e,

The median has several advantages over the meanmdkt important is
that extreme values do not affect the median asgly as they do the mean.
That is the mean is much more sensitive to outidnes as compared to the
median.

Percentile: The J' percentile of the data is the value such thatrpgue of
the observations fall at or below it.

The median is the Bpercentile the first quartile is 2Percentile and the
third quartile is the 7%percentile.

Dispersion: Variation is a fact of nature and in industriaklifoo. No two
items produced by same process are exactly the. sarasts done on the
same samples may vary from chemist to chemist @m flaboratory to
laboratory. This is true whether the test equipnnavolved is automatic or
manually operated. Variation can be because ok lat complete
homogeneity of chemicals used in test, variationtast environmental
conditions or due to difference in the skill ofechists or testing equipments
etc. Variation in the test results add to the wagaty of decisions and
hence it is important to measure variation androbiit

In summarizing data, the variability in the valussoften an important
feature of interest. Major measures of disperai@n:
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1. Range (R) : The range is the difference between the largedt a
smallest value in a data set. That is Range (Rprgest Value -
Smallest Value.

2. Quartile: Quartiles divide the data into four equal parEsach part
contains 25% of the values. ; @ call the first or lower quartile and
Qs is called the third quartile or higher quartil®; is the median.

Interquartile Range (IQR): It is the difference between the third and the
first quartiles of a set of values. That is Inteagile Range (IQR) = O

Interquartile range is a simple measure of speatddives the range covered
by the middle half of the data. It reflects theiability of the middle 50
percent of the data.

The quartiles and the IQR are unaffected by extreahges.

Inter Quartile Range
< >

A A

Y Y
Y, of vadue V4 of values

Ve

Min. 01 02 03 * Max.
Values Values

1% Quartile ¥ Quartile % Quartile

Calculation of Quartiles:

1. Arrange the data in the increasing order andtéothe median.

2. The first quartile in the median of the obsé@prabelow the location
of the median.
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3. The third quartile in the median of the obseaorat above the median
of all observations.

Example: Data below gives the daily presence of sulphudesiin a city.

15.8, 26.4, 17.3, 11.2, 23.9, 24.8, 16.2, 12.87,228.8, 7.7, 13.5,
18.1,,17.9, 23.5,

Determine the quartiles and inter-quartile range.

1. Arrange the data in the increasing order i.e

7.7,11.2,12.8, 135, 15.8, 16.2, 1113,9, 18.1, 22.7, 23.5, 23.9, 24.8, 26.4, 28.8

2. Q = Median = Middle value i.e™value = 17.9
Q -13.5 and @= 23.9.

3. Interquartile range (IQR) %QQ, =23.9-13.5=10.4

Standard deviation and VarianceThe Most commonly used measure of
dispersion is called the standard deviation. lesakito account all the values
in a set of data.

Suppose the test result values axg, X, ,:--, Xy

Population Standard Deviation: It is denoted by the Greek symboland
IS given by root mean squared deviation from thamye. That is

): X1+X2 +...+XN

Wherel is the population mearfu N
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Sample Standard deviation (s)f the sample
X1, X2, Xp -

where X =

result values are

It is given by

X1+X2+...+Xn

n

Variance :Population variancéo 2) and sample varianc(sz)

are given by

Example :Standard deviation of the sample test values:

X X=X | (x-X)?
15 5 25
_ 100
18 -2 4 X==—=20
5
20 0 0 _
S:\/LZ(X—X)Z
21 1 1 n-1
26 6 36 = 6746 = 4.062
100 0 66

66

Sample Standard deviation (s) = 4.062 and samplenance = Z =165
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Benzene | Frequency Mid- | f xM (M _m)Zf
Concentarions Point
(f) (M)
3.265 - 3.295 5 3.28 16.40 0.02042
3.295 - 3.325 23 3.31 | 76.13 0.02643
3.325 - 3.355 36 3.34 | 120.24 0.00005
3.355 - 3.385 27 3.37 | 90.99 0.01839
3.385 - 3.415 8 3.40 | 27.20 0.02518
3.415 - 3.445 1 3.43 3.43 0.00074
100 334.39 0.09121

m:33439 = 3.3439 ands =, /Ml =0.03035
100 99

Note :s = \/ni—l [Xzf - n(Y)Z]

Coefficients of Variation: The Standard deviation is an absolute measure
of dispersion that expresses variation in the sanis as the original data.

It cannot be a sole basis for comparing two diatidms especially if the
data are measured on different scales or if langgan has larger variation.

In such cases, we use coefficient of variatiohis la relative measure of
variation. It relates the standard deviation ahé mmean and expresses
standard deviation a percentage of mean.

variation is
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Standarddeviation

Coefficient of variation (CV) = (G) x 100.
Mean (i)

Example: Laboratory 1 can compete on an average 40 anapeesay

with a standard deviation of 5. Whereas laboratbrgan complete 162
analyses per day with a standard deviation of \Nhich laboratory shows
more consistency.

Solution: At first glance, it appears that laboratory B Hage times more
variation in the output as compared to LaboratoryBut Laboratory B has

more output per day. Considering all this, we néedcompute the
coefficient of variation.

Lab 1: Coefficient of Variation :4% x 100=125%

Lab 2: Coefficient of Variation {'?SCX 100= 94%

Laboratory B has less relative variation.

BOX PLOT

Box-and-whisker plot (box Plot) is a powerful gragat summary of
distributional characteristics of data. The boot glptures main features of
location, spread and shape of a distribution.rdvjaes an informative,
transparent data display for decision making.

A box plot consist of a box, whiskers and outliers.

The box plot as drawn is shown in Figure 1
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* Outlier

Maximum value
«—

«—— 75" percentile(Q,)

«— 50" percentile (medianjQ,)

— <+— Mean (optional)
4 — .
25" percentile(Q,)
4—

Minimum value

Figure 1 : Box Plot

The box contains a middle 50 percent of the dagpbttom of the box is at
the first quartile(Q,) and the top is at the third quarti(@,) value. The

median, the mid point of the data set is shown dseaacross the box.
Therefore% of the distribution is between this line and tbp of the box,

and % of the distribution is between this line and tlegtdm of the box.

Thus the median line divides the box into two seratioxes which represent
the upper and the lower central quarter of the.data

The outer parts of the data set or the "tails #re whiskers. The whisker
are plotted by lines that extend from the top dreddottom of the box to the
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extreme data values (maximum and minimum) that revetaken to be
outliers.

The mean of the data set is indicated by plus Gtgn

Interpretation of the box plot

» Box covers middle half of the data

» Whiskers show range of the data

* Symmetry is indicated by the box, the whiskers redlocation of the
mean. Closer the mean is to the median, the morenstrical the
distribution. In case of skewed data the box @atot symmetric

» Position of the box and median gives the locatibthe data

» The length of the box is proportional to the ingeiartite range (IQR)
gives the dispersion. Thus larger boxes have latigpersion

* OQutliers are points outside the lower and uppeit land are plotted
with asterisks.

The limit used for identifying the outliers are:
Lower Limit: Q,-15Q,-Q)
Upper Limit:  Q, +15(Q, -Q,)
The length of the whiskensgld not exceed 1.8, -Q,)

» Different data sets from two or more groups cancbmpared by
constructing box plots side-by-side. In this caséth of the boxes
can be drawn proportional to the sample size otitlia sets.

Exercise : Consider the data on presence of methyl tertartyl ether in
water from two different sources.

Source A: 509, 509, 516, 518, 510, 514, 514, 523, 501, 511,
503, 510, (MTBE in Water) 495, 506, 5333, 512, 509, 507

Source B: 504, 524, 515, 508, 513, 520, %538, 521, 510, 502,
528, 536, (MTBE in Water) 528, 516, 51195512, 524, 523
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CHAPTER -5

PROBABILITY AND STATISTICAL DISTRIBUTIONS

Introduction:

In our everyday language, when we use the phrasesst likely ; 'highly
probable’, 'less likely' etc. what we are reallijndpalmost unconsciously, is
that we are expressing our degree of belief in dbeurrence of certain
special events. In probability theory, these cotsape formalized and rules
are developed to obtain quantitative estimatesabability of events so that
the estimation procedure is freed from the shadkiassibjective judgment.

Experiments And Events :

An experiment is some well-understood procedurprocess governed by a
set of rules, whose outcome can be observed. dorarexperiment is an

experiment whose outcome is not uniquely determimgcny theory; but

the set of possible outcomes is determined. Tlaeackeristic feature of an
experiment is that it can be repeated infinitelfhe set of all possible

outcomes is called the sample spaée eventis any subset of the sample
space.

Examples of deterministic experiments are :

(i)  Observing the distance traveled by a car rugmimth an average
speed of 45 Km. for three hours.

(i)  Measuring exactly the amount of heat generate@n electrical
circuit having resistance R ohms and carrying curre for t
seconds,

In these experiments the outcomes can be predwgittd great accuracy
using the laws of physics and elementary mathemati

On the other hands a random experiment is charzetiely a set of possible
outcomes, the set having more than one number.
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Examples of random experiment are :

()  Tossing a coin and observing whether it fakst or tail.

(i)  Observing whether it rains or not the next day

(i)  Noting down number of absentees exceedingexdied number in
a shift.

(iv) Whether an electrical/electronic equipmentgassall tests in final
inspection.

(v) Observing the number of batches of items aezkpby the
customer on sampling inspection.

(vi)  Number of blow holes in a casting.

(vii) Test result value obtained after testing shenple

An event ( or subset of the sample space) of aoranekperiments may be
called a random event.

Probability Theory provided the foundation for ugeStatistical methods in
solution of problems involving random events.

Probability And its Measure:

Before we evaluate the probabilities of random &vém numerical terms,
we must choose a unit of measurement. Such asucetled the probability
of a sure event. An event is calleduae event . An event is calledsare
event if it will certainly occur in the given experimentFor instance, the
appearance of either head or tail on tossing a i@ sure event. The
probability of a sure event is assumed equal tq and zero probability is
assigned to armpossible event i.e the event which in the given experiment,
cannot occur at all (e.g. the appearance of terbrum spots on the face of
a six-faced die). We can also state intuitivelgttthe probability of the
occurrence of head in tossing a coin is 0.5. listnod the practical cases of
a random events, the probability will be havinguesl other than 0, 1 and
0.5. However, probability of any random eventlvalways be in the
interval between zero and one. Now the questidiH@v do we measure
the probability of an event ".

39



Classical Method :

The classical method of measuring the probabilitgroevent A arising out
of an experiment, denoted by P(A) is

where f = number of outcomes favourable to A.

P(A) :%

and n = Total number of equally likely, mutualgxclusively and
collectively exhaustive outcomes of the experiment.

Example - 1:

Tests of water samples declares water fit (F) @t (id) for drinking. What
is the probability of getting [Unfit, Unfit] drinkig water samples in two test-
tubes ?

The possible outcomes are (U,U), (U,F), (F,U), @né).

Thus the number of outcomes favourable for the teven

The number of equally likely, mutually exclusive dancollectively
exhaustive outcomes = 4

So, the required probability % =025

Example

What is the probability that the sum of scores w9 while throwing two
dice together having six faces each?

Here the numerator can be realized from four ouemz . ( 3,6), ( 4, 5),
(5,4) and ( 6, 3) and the total number of all pgolesoutcomes = 36.

4 1
So, the required probability ==~
q g y36 9

The Classical Method is inapplicable in situatiorieere we can not assume
that the outcomes of experiments are equally likdfpr example, classical
method cannot help us in finding the probabilitytlo# following events :

1. Occurrence of head in tossing a biased coin.

40



2. Failure of a tube/equipment/device after workimgl1000 hours.

To help us in such situations, we make use of te@atRe Frequency
method of assessing probability :

Relative Frequency Method :

Relative frequency of an event A

Numberof timeseventA is observed f_

" Total numberof trials conductecr observatios made n

Probability can be estimated by the relative freqyewheren is infinitely
large. Symbolically,

Probability of an event

0o

: f
A=1Ilim no H
What we really mean is that the relative frequeatyn event tends to its
probability. To be more specific, the implicatimthat if the number of

independent trials is sufficiently large, then wéhpractical confidence the
relative frequency will be as close to the probgbéds desired.

The above method is valid due to ' statisticalibtab in the occurrence of
random events and provides us with the methodtohasng probability as
long term proportion of occurrences.

Next we discuss a few indirect methods which malgossible to calculate

the possibilities of composite events in terms afbabilities of simpler
events. They are the Addition Rule and MultiplicatRule of probability.
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Addition Rule of Probability

The probability that one of two mutually exclusiegents ( it does not
matter which of them) occurs is equal to the surthefprobabilities of these
events.

This rule is expressed by the formula.

P(AUB) =P(A)+P(B).

Example :

The LSL and USL of ambient air of an area of goatkegory has AQI in
the range of 20 to 40.

Let us define the elementary events as follows :
A : the event that sample has AQI below LSL
B: the event that sample has AQI above USL

The probabilities of these events was estimateth ftbe past inspection
records from a particular area by making useelative frequency method.
Accordingly it is found that P(A) = .05 and P(B).03. What is the
probability that a random sample taken from theesanea will be outside
the specification?

So, the required probability can be estimated as
PAUB)=(A) =.05 +.03 =.08

The practical interpretation of this probabilitytisat we expect 8% of the
sample will be outside the specification as lasgno major changes in the
air quality takes place.

Multiplication Rule of Probability

If A and B are two independent events, the proigbibf their joint

occurrence is equal to the product of the prokadsliof the two events .
This rule is expressed by the formula
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P(ANB) = P(A)P(B)

If the two events occur in successive trials thendrder occurrence should
also be taken into account.

Example :

a. In the previous example of AQI of ambient awhat is the
probability that in two successive samples takee, gample is below
LSL due to low AQI and the other sample is above.ld8e to high

AQI 2.

D, : Sample is below LSL due to Low AQI
Dy : Sample is above USL due to high AQI

A : The event that first sample has low AQI ardesd sample has

high AQI
B : The event that first sample has high AQI aadond sample has
Low AQI.
P(A) = P(D, )P(D, )= 05x 03=.0015
P(B) = P(D,,) P(D, )= 03 x 05=.0015

So, the required probability = P(A) + P(B) =@16 + 0.0015 =0.003

Statistical Distributions:

Binomial Probability Distribution

The conditions for occurrence of Binomial probabpitlistribution as
follows :

Outcome of a trial is classified as ' succes$adure'.
Probability of success ' p' remains constamhfnoal to trial .

n independent trials are made.
Random variable of interest is the number otsss (X) in n trials.

Pwn P
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The probability of getting x number of successes tnals is given by

P(X:x):p(x):()r:jpX (1-p)"~* for x =0,1,2---,n
Also note thatE(X) =np and V(X) =npgwhereqg=1-p

Example :Forn=18and p=0.1

X 110 1 2 3 4 5 6 7

P(x): 10.150 0.300 0.284 0.168 0.070 0.022 0.001 0.0¢

Average (X) =np
Variance (X) =npg and standard deviation of (X)#npq

Poisson Distribution:
Examples of random variables having Poisson didioh are

I number of breakdowns in equipments in fixed timervals
. number of defects in slides of same type
lii.  number of pathogens in drops of water of sgoomt.

Thus the random variables, of interest can ocdbeein time or in space.
The conditions given rise to Poisson distributiom a

1. Occurrence of event in short interval of timespace is
proportional to time or space interval.

2. Probability of two or more occurrence in shaterval of time
or space is negligible and can be considered zero.,

3. occurrences are independent

Random variable : Discrete
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Range of X=0,1, 2, 3,---

e—/] /]X
X!

P(X=x)=

WhereA = average number of occurrences in fixed timervialleor fixed
size in space.

Average (X) =A &
Variance (X) =A &

Standard Deviation 54

Normal distribution:

The normal distribution is the most important cootus probability
distribution. It has been useful in countless maplons involving every
conceivable discipline. The usefulness is dueart o the fact that the
distribution has a number of properties that makeasy to deal with
mathematically. More importantly, however, thetalmition happens to
describe quite accurately the random variables céteal with a wide
variety of experiment.

The normal distribution is completely specifiedtiip parameters viz mean
(u) and standard deviatidmr). The probability density; function of normal
distribution is

1 _TWWT
f(x)= e 2\ 7/ for —o< x<+oo

\N2IT O

where (i) = mean and (0) = standard deviation
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Graph of normal distribution

Examples of random variables are measurable cleaisiats like length and
diameter of components, chemical properties (sa§o39n Grey Iron),
electrical characteristics like resistance etc.

The theoretical justification for the occurrence Mbrmal distribution is
provided by the CENTRAL LIMIT THEOREM which statésat the sum of
a number of independent and identically distributadom variables each
with a finite mean and variance will bser to a Normal distribution as the
number of random variables increases.

Thus, when a random variable represents the tedteof a large number
of independent small causes, the Central Limit Téeoleads us to expect
the distribution of that variable to be Normal.

Properties of a Normal distribution

. It has a bell shape.

It is single peaked and thus unimodal.

It is symmetric about the mean and Mean = Mediadode. All

located at the center of the curve.

4. The two tails of the extend indefinitely and/@etouch the horizontal
axis.

5. The location and shape of the curve is detemnic@mpletely by

mean (1) and standard deviatio@().

W=
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Area under the Normal Curve

The total area under the normal curve is one. drea under the curve is
interpreted as the probability that is for anymal distribution with mean
(K1) and standardq@), the area under the curve for selected intergbd/éen

meanz KO that is between Mean ko and Meant KO is tabulated below

K Area in %

1 68.26

2 95.46

3 99.73

1.96 95.00

2.58 99.00

3.09 99.90

4 99.99366

5 99.99994266
6 99.99999980

For k = 2, Area under the curve between the Ilimit4ean

20 anc meatr + 20is given by 0.9546. That is
Prob [u-20< x<u+20 | = 0.9546and so on
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34.13%

34.13%
13.59 % 13. 59%
0
25% 2.5%
I I
-3 -2 1 - 0 1 2 -3
68.26% +-1 Sigma
<«—— 9546% +-2 Sigma——»
< 99.73% + -3 Sigma >

Standard Normal Distribution

A normal distribution with mean zero and standasdiation equal to one is
called a standard normal distribution. Thus tleadard normal distribution

has l{=0anco=1. If a random variable X has a normal with mean
M and standard deviatiod, the random variable defined as

X-h _ X-Mean

/=

o) SD.
called the Standard normal variable. Normal prdibaliable is provided
for the standard normal variable (Z). It may be&eddhat

has mean zero and standard deviation one. Z is

Pla<x<b]=P {ﬂ <7< M}
o o

48



This implies that

Plu—o<X<u+o] =P[-1<Z <1 =0.6826and
Plu-20<X <u+20] = P[-2<z<2] =09546

Example :

A softdrink machine is regulated so that it disgesron average 300 ml per
cup. If the amount of drink is normally distribdterith a standard deviation
of 20 ml.

(a) What fraction of cups will contain more the2b3nl.

(b) What is the probability that a cup containsassn 285 ml and 335 ml.
(c) What is the probability that cup will contairaetly 300 ml.

(d) How many cups will overflow on an average ipswof size 340 ml are

used for the next 2000 drinks.

Solution : Let X denoted the quantity of soft drink per cupere Mean
(1) = 300 ml ando = 20ml and X follows normal distribution. We are
required to find :

P[X > 325 ml] or

u =300 325
o0=20
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Area under the normal curve above 325 ml. Valug obrresponding to X
=325 is

Z :M = ;—g: 125. From tables we get this area equal to

20

1-P[Z2<1.25]=1-0.8944 = 0.1056 = 10.56%enke 10.56% of the cups
are expected to contain more than 325 ml.

(b) In this case, we need to find the area betweertimits 285 ml and

335 ml.
N
/ | \
I
285 300 335

Z value corresponding to 335 is

,.335-300 _35_
2C 2C
Z value corresponding to 285
,.285-300 _-15_ _ .
2C C
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Required probabilityis =P[ Z < 1.75] -2 [<-0.75] = 0.7333

Hence 73.33% of cups are likely to have soft dbekveen 285 ml and 335
ml.

(c) The probability is zero.
(d) In this case, we first find the chances thawi be more than 340
ml.
Value of Z corresponding to 340 is
_340-300 _ 40

7= =
20 20

Hence,P[Z>2]=1-[Z 2]=1- 0.9772 = 0.0228.

Number of cups likely to overflow if cups of si3d0 ml are used for the
next 2000 drinks = 2000 x 0.0228 = 45.6 cups.
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CHAPTER -6

REPEATABILITY & REPRODUCIBILITY

Bias : It is the difference between the observed averagleevof a
characteristic and the true value or accepted enter value. Bias is the
measure of the total systematic error as compare@rtdom error. There
may be one or more systematic error componentsilbonhg to the bias. A
large systematic difference from the accepted eefsx value is reflected by
a larger bias value.

«— BIAS —»

Measurement System’s  Reference Value
Average

Laboratory Bias: The difference between the observed average of the
test results from a particular laboratory and arepted reference value.

Bias of Measurement Method:The difference between the observed
average value of test results obtained from athdatories using that method
and an accepted reference value.

Stability: Stability is the total variation in the measurensestttained with
a measurement system on the same samples wheuarmgassingle
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characteristic over an extended time period. Tatability is the change
In bias over time.

| ;IME

g

Reference Value

Precision: The closeness of agreement between independentsedts
obtained under stipulated conditions. It descriheset effect of
discrimination, sensitivity and repeatability ovlee operating range: Size
and time of the test or measurement system. ASTiMeakeprecision to
include the variation from different reading, instrents, people or
conditions.

The measure is usually expressed in terms of ingoecand computed as a
standard derivation of test result. Higher staddgarivation reflects less
precision.

Repeatability : Variability in independent test results obtainethvihe
same method on identical test items in the sanwdédry by the same
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operator using the same equipment within shortvateof time. It is the
inherent variation in a within a system when cand# of testing are fixed
and defined, fixed samples, parts, instrumentdsta) method, operator and
environment and assumptions.

Reference Valui
\ 4

Repeatability

Measures commonly used are : Repeatability standard derivation,
repeatability variance, repeatability coefficiehvvariance.

Possible Causes for poor repeatability include :
» Within sample or parts: form, position, consisienc

* Within-instrument : repair, wear, equipment or diee failure, poor
guality or maintenance.

» Within-standard: Quality, class, wear

e Within-method: Variation in set up, technique, zegy holding,
clamping, point density.

* Within-appraiser: Technique, position, lack of epnce,
manipulation skill or training, feel, fatigue.
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* Within-environment: Short cycle fluctuations in teenature,
humidity, vibration, lighting, cleanliness.

* Violation of an assumption: stable, proper operatio

» Instrument design or method lacks robustness, yoiéormity

* Wrong gauge for the application

» Application: part size, position, observation, err@eadability,

parallax)

Repeatability: Variability or precision in test results obtainedgth the
same method on identical samples in different ratooies with different
operators using different equipment.
Reproducibility is typically defined as the varatiin the average values of
the measurements or test values obtained by diftf¢émboratories.

Potential sources of reproducibility error include:

» Between samplesaverage difference when measuring types of parts,
A, B, C etc, using the same instrument, operatodsraethod

» Between-instruments average difference using instruments A, B, C
etc., for the same parts, operators and environment

» Between-Standards:average influence of different setting standards
in the measurement process.

* Between-methods: average difference caused by changing point
densities, manual versus automated systems, zerbiolging or
clamping methods, etc.

» Between-appraisers (Lab Assistants):average difference, between
A, B, C, etc., caused by training, technique, siltl experience.
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» Between-environment:average difference in the measurements over
time caused by environmental cycles, this is tlstragommon study
for highly automated systems in product and progesdfications.

* Violation of an assumption in the study.

* Instrument design or method lacks robustness.

» Lab Assistants training effectiveness

* Application — part size, position, observation err@eadability,
parallax).

Estimation of Repeatability and Reproducibility :
In an inter-laboratory programme, a large numbelabbratories carry out

repeats test on the same sample of homogeneoasahaflThe scheme can
be depicted as shown below.

Lab 1 Lab2 ............ Lab k
o O O o O o o 5 o
1 2 n 1 2 ... n 1 2 ... n

If the sample is tested only once in differentolabories, the variation
present in the test results value will reflectnbined variability arising
from with-in laboratory variation and of the vauiilgly arising from
between-laboratory variation. In such cases mads possible to estimate
repeatability and reproducibility of the measuretr@rstem.
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Description of the Model: The repeatability and reproducibility of the
measurement system can be estimated from the analythe data from a

group of laboratories selected from a populatiodatoratories using the

same method model

y=m+B+e

where

m : is the mean of the results

B : is the laboratory components of the bias unegeatability condition

e : is the random variability occurring duringzaneasurement under
Repeatability condition.

Let o2 denote within-laboratory variance. It is known asepeatability
variance.

oZ: the variance of B it is the between Laborataiance, 07

The sum of the between laboratory variance and witbin-laboratory
variability is known as reproducibility variancejﬁ)

Reproducibility variance ©3 = 07 + o?
Example:

Suppose there are four participating laboratories @ach laboratory carry
out three repeat test on the same sample.

Mean Variance
Laboratory1l | 25 27 26 26
Laboratory2 | 26 22 24 24
Laboratory3 | 21 24 24 23
Laboratory4 | 25 24 26 25

P WwhBRE
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Estimate of Repeatability

1+4+3+1
SE:—3:9:225
4 4

Variance in laboratory means

2
= 1.67 is an estimate gfg[— +o?

Hence 167 = %3 + o}

S? = estimate ofo” = 167 — 075= 092
Estimate of reproducibilit;(SzR ): S+ St =225+ 092= 317

1. Repeatability limit =2.8 x +/ 225 = 420
2. Reproducibility limit =2.8 x +/ 317 = 498
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CHAPTER -7
ESTIMATION AND CONFIDENCE INTERVALS

The objective of statistical inference isto draw conclusions about population
characteristic or true value using sample test result values. Statistica
estimation makes considerable use of quantities computed from the
observations in the sample. We define a statistic as any function of the
sample test results. For example, sample mean and sample standard
deviations are both statistics.

Typesof Estimation:

We can make two types of estimation about a population characteristic or
true value using the test results obtained.

A Point Estimation : A point estimate isasingle value that is used to
estimate an unknown popul ation parameter or true
value.

Aninterval Estimate: Aninterva estimateisarange of vaues used to
estimate a popul ation parameter or true value.

Point Estimation : The objective of statistical point estimation is to make
an estimate of the population or true characteristics with the help of sample
statistic. For example we might estimate the true mean octane rating of a

particular type of fuel with the help of sample mean (Y) When the size of

population is very large or infinite, we never know the true value of the
population mean. We can only make estimate of the population mean. The
estimate is bound to vary depending upon the random samples selected and
the precision of testing method used. The sample mean rarely coincides
with the population mean. Some related concepts and definitions are

Estimator: The function of the observation chosen to estimate the
population parameter, e.g. sample mean is an estimator of population mean
M. Two important desirable properties of an estimator are: (i) unbiasedness

(if) minimum variance.
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Estimate: The particular value of the estimator in given situation

Unbiased estimator: Whose expected or average value taken over an
infinite number of similar samples or all possible samples equals the
popul ation parameter being estimated.

Standard error :The standard derivation of the estimator. For example, the

). . 0)
standard error of sample mean (X) isgiven by T

n
Population Point Estimate Standard
Par ameter error
Population Sample Proportion p(1-p

Proportion (P) (P)

Population ~ Mean | sgmple Mean (7) Jn

(1)

Population Variance

[0?) )5

The main disadvantages of point estimate is that it provides us only with a
single value as the estimate of unknown population parameter. It does not
provide information about the precision of the estimate i.e. about the
magnitude of error due to sampling. The sampling distribution of the
estimator and the sample size will determine the extent of closeness of the
estimate to the true value. In many practical situationsit will be desirable not
only to provide an estimate but also to establish an interval within which we
can expect with a given degree of probabilistic confidence, that the unknown
parameter would like. The procedure is known as confidence interval
estimation. The width of the interval provides.
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Confidence Interval: Any confidence interval hastwo aspects
(i)  Aninterval computed from the data.
(i)  The confidence level attached to the interval.

It gives the probability that the interval include the parameter or true value.
User can choose the confidence level. In most cases 95% confidence or

higher is taken. The confidence level is usually written in the 1-—Q. For
example, 95% confidence level correspondsto 1—a =0.95 or a = 0.05.

A 1-a confidence interval for the parameter O is given by two statistics
UandL suchthat P|L<68<U|=1-a. Liscalled the lower confidence

limit.
Uis called the Upper confidence Limit.
Confidence Interval of Population mean (u)

(1) When population standard deviation (0 ) is known

The (1—Q) percent confidence interval for population mean (u) IS given
by :

- o)

where Z(V is the value of the standard norma variate exceeded with
2

probability %.

(2) When population standard deviation O is unknown. In this case the
confidence interval is given by

< S
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where X isthe sample mean and S denotes the sample standard deviation,
v )2
X=X
givenby S = Z( )
n-1
and tO/ is the value obtained from t distribution with ( n-1) degrees of
2

a
freedom such that it is exceeded by probability E

Example: 16 observations made on the SO, content in the air and the
values are given below :

97.99, 96.25, 97.51, 93.63, 92.63, 92.51, 95.44, 94.80
99.21, 89.19, 89.50, 93.73, 97.34, 93.64, 87.25, 96.11.

(i)  Obtain apoint estimate of the population mean SO, content.
(i)  Establish 95% confidence interval for the true mean SO, content.

Solution :

We have sample mean (7 ) =94.98 and sample standard deviation = 3.73.

(i)  Point estimate of true mean SO, content is X =97.98
(i)  95% confidence level for true mean SO, content is given by

N S

We have t - distribution (table) with degrees of freedom 16 -1 = 15, the
value of t(V =2.13. Hencetherequired confidence interval is given by
2

94.98 + 2.13X3'—73 =94.98 +1.97.

V16

That is the true mean SO, content lies between 93.01 and 96.95.
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Example : Out of 1000 people treated with air of particular composition,
200 showed allergic reaction. With 99% confidence level, estimate the
proportion of the population that would show an allergic reaction to the air
of particular composition.

Solution : Here sample proportion showing allergic reaction is

— 200 . . . .
P:ﬁ =0.2. Thisgivesusapoint estimate . That is 20% of the people

are likely to show alergic reaction.

99 % confidence level is given by

S, [pa-p
=9, n

0.20 + 2.58 1/%0'8 =0.20 = 0.0326
1000

that is 99% confidence interva for the proportion of population likely to
show an allergic reaction to the particular composition of air is 16.74% to
23.26%
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CHAPTER - 8

TEST OF HYPOTHESIS FOR DECISION MAKING

Often, it is desired to test on the basis of sardpla whether the population
mean or proportion differs from a specified staddar historical value.
Hence we are concerned with drawing conclusion &apopulation mean
(1) or proportion based on sample data.

Hypothesis testing begins with an assumptionsedal Hypothesis, that we
make about population parameter. Then we collastpte data, produce
sample statistics, and use this information toakediow likely it is that our
hypothesized population value is correct.

Basic Concepts :

‘Null Hypothesis’ (denoted byH), it asserts that there is no difference
between the population from which the sample hanlselected and the
population whose parameter is specified under tigpothesis. Null
hypothesis is formulated with the hope of rejecting Simultaneously we
must stipulate the alternative hypothegiernative Hypothesis (denoted
by H;) which is formulated with the hope of provisionadigcepting it.

Type | and Type Il Error :

Whenever we test a statistical hypothesis with $ardpta, we shall have
one of the four possible results along with theolabilities in parenthesis
summarised in the table :

Reality > Ho Ho
v Decision True False
Accept Hg Correct Decision Type Il Error
1-a (B)
Reject Hy Type | Error | Correct Decision
(a) @L-5)
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Type | Error : Rejecting a null hypothesis gHwhen it is true.
Type Il Error :  Accepting a null hypothesis §Hwhen it is false.

Level of significance (a). The probability of committing Type | error is
designated bya called the level of significance.
The probability of committing Type Il error is dgsated by .

The decision criteria for rejecting the Null Hype#ies can also be stipulated
in terms of ‘critical region’ of théest statistionvhich is a function of sample
observations and whose sampling distribution is wkmounder the
assumption of null hypothesis.

Critical region is that range of values for test statistic whosebability of
belonging to that range is equal to the level gh#icance when the null
hypothesis is true.

One Sided Test

It may be noted that a test of any statistical tiyesis where the alternative
Is one sided such as

Ho: 4 = ly; Hy 1 1 <y, orperhaps
Ho " = Ho; Hy D 0> g

is called a one-tailed test. The critical regionthe x> 4, lies entirely to
the right tail of the distribution of the test st concerned, while the
critical region for the alternative hypothesyg > 1, lies entirely to the left

tail. A test of any statistical hypothesis whene alternative is two sided
such as



Both Sided Test
Hot = Hos Hyt 07 4

is called a two-tailed test. The alternative hipesis states that either
U< U, oru> u,. Values in both tails of the distribution congie the

critical region.

Whether one sets up a one-sided or a two sidethatiee hypothesis will
depend on the conclusion to be drawrH{ is rejected. The location of the
critical region can be determined only aftdy has been stated.

Steps for Test of Hypothesis

Now, for give sample size, we can outline the stagests of hypothesis as
follows :

1. State the null hypothesi$id) and alternative hypothesid).

2. Choose the level of significanae .

3. Select a statistic whose sampling distributefriown if {) is true

and certain other assumptions are satisfied.

4. Find the critical region for the statistic, winidepends omr and the
probability distribution of the statistic.
Compute the statistic.
Draw the conclusions. If the statistic fallstie critical region, reject

o g

(Hg) . Otherwise accept it provisionally till furthexvidence is

accumulated and tested again.

Test for Specified Proportion :

Here we have to test the null hypothesty : P = P, on the basis of
sample proportion p = r/ n where ris the banof items falling into the
category of interest out of n randomly selectenhge

ForHo: P = P, the appropriate test statistic may be ‘numbeitarhs
falling into the category of interest (R) whicfollows Binomial
Distribution.
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When eitheP <05andnp>5 orP > 0.5andn (1 -P)> 5, we may

use Normal approximation to Binomial distributiom that the test statistics
becomes
r-nk,

NS (1- P05

Z follows standard Normal distribution.

The test statistic can also be expressed in tefrsaraple proportion p =
r/n. In this case

p- R

V n

Here also Z follows standard Normal Distribution.

Z =

Example :

A company claimed that in a particular region 55%the consumer use
products made by them. In a random sample of 1€@fsumers 510
consumers agreed that they actually use the prodade by this company.
Can be conclude at 5% level of significance that thaim of the company is
correct ?

Ho : (P = .55) againsH; : (P < 0.55)

TestStatisticZ = ——— 0 = 510- 550
JnP, @-PR,) /1000 x 55x 45
40 _ -40

= 2 = ™7 = _254
J2475 15732

Critical region willbe Z = < - 1.64.

Conclusion :

Since the observed value of the test statistits falthe critical region, hence
we rejectH, and conclude that the company claim is not carrec
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Testing for a Mean (u) :

A random sample of 8 cigarette of a certain brassldn average tar content
of 18.6 milligram and sample standard deviatior2& mg. Is this in line
with manufacturer’s claim that average tar contkrds not exceed 17.5 mg.
Take a = 1%.

Hy: (u =175) VS H, : (1 >175)

T2 XM (186-175) _ 11
s/+/n 29//8 1025

Critical Region : From t — distribution with.fd= 8 -1 = 7 lies in the
upper tail (2.99 +w). Do not rejectHy and hence accepi, .

= 1.073
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CHAPTER -9

REGRESSION ANALYSIS

INTRODUCTION

In many fields like business, administration, tgors, education and in

industry, we are required to establish the relatigqus among variables of
interest. For example, the relationship betweerepand demand, the
number of units produced and production costs, rdbsessm rates and

overtime costs, input and output. The nature efriationship helps us to
make predictions or forecasts, provide detailedewstdnding of processes,
exercise better control, and to optimise our preegesand systems. One
way to find the relationship is by means of regmssanalysis.

Regression Analysis

Regression analysis provides quantitative techmsigioe establishing the
relationship as a formula between the variablesngoeconsidered.
Regression analysis enables us to determine almkdirelation between a
variable of interest, called the dependent varialsled one or more
independent variables or predictor variables. Yaotes the dependent
variable whose value we want to predict. X desdthe independent
variable or predictor variable. After we have mstied the relationship, we
use correlation analysis to determine the strengtine linear relationship.
The correlation analysis tells us how well a foradefuation actually
describes the linear relationship.

Relationship between two variables
It is important to understand the difference betweeathematical and

statistical relationships.

Mathematical Relationships
When the mathematical relationship between X and &xact, the value of
Y is exactly determined once the value of X is st For example

Y =100+ 50X
where X denotes the number of persons attendingreedparty and Y the
cost of the dinner party. Overhead cost for theyps Rs. 100 and the
dinner cost is Rs. 50 per head. In this caseg avee specified the value of
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the variable X, the value taken by the variablesompletely known to us.
If 10 people attend the party, that is X = 10, ¢bst of dinner is
Y =100 + 50x 10 or Y = 600.

Satistical Relationship

In this case, the value of the dependent variablés Yhot completely
determined by the value of the independent variable For example, we
may find that two families have the same incometbair expenditures on
food items are not same. This difference may leather factors like, age
or a difference in food habits that we are not @eTing.

Similarly, consider the relationship between fughsumption and the speed
of a vehicle. This relationship will not be exad the fuel consumption
depends on other factors apart from the speedeo¥é¢hicle. These factors
include driving habits, road conditions and the ajethe vehicle. In
regression analysis, we must know or assume thetifumal form of the
relationship between the variables. This is donediting Y equal to some
function which depends on X and on some parameW#iesmay arrive at the
desired function by one of two methods.

(a) From analytical or theoretical considerations.

(b) By examining the scatter diagram obtained loytiplg the data on a X
by Y plane. The values of Y are represented orvénical scale and
the X values on the horizontal scale. The pattdrpoints in the
scatter diagram reveals what function form mayused for the
purpose of analysis.

FITTING A STRAIGHT LINE

We now consider a basic regression model whereglagonship is linear,
l.e. for any value of X the mean of Y is given Igy+3 X . Since, in

general, an observed value of Y will be differemnf this mean value, we

denote the difference hy and write the statistical relation in the form
Y=B,+f, X+

where B, and g, are unknown parameters,3, represent the Y intercept

and g, represents the slope of the line.represent the random deviation of

the observed Y from the mean valgg + g, X. ¢ is called the random

component. The value of for any observation depends on the possible
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error of measurement and on the values of the Masgaother than X. We
make the following assumptions for carrying outresgion analysis:
1) E(e)=0, variance(¢)=oc? and the error component follows a
normal distribution.
i) The values of X are known i.e., there is nodamness involved
in the value of X.

Least squares criterion
The regression parametes and g, are unknown and must be estimated

from sample data. Point estimates of the parasedaee commonly
obtained by a method of estimation called the netbfoleast squares. As
per this method we choose the parameter suchht@aum of the squares of
error is minimum. That is, parameters are obtameth that

S= ZEIZ :Z(YI -By- B.X)*
IS minimum. It can be shown that the least sgeatanators for the linear
regression are obtained by solving the following gquations:

YYo= 0Bt BY X

inYi = b5 zxi + :812 xi2

i=1 i=1 i=1
These equations are called normal equations, tliao of which is given
by

XY XY Y(X ~X)(Y, V)

b1 - i:l — - -
Y XI-n(X) (X = X)?

b=Y -b, X
where 3 and k denote the estimates gf and g, respectively.Y and X

are the mean values of Y and X respectively. @ldast squares method,
we minimize the sum of the squares of the vertiisiances of the points
from the line.

Prediction of mean value of Y
The prediction of E(Y), the mean value of Y for man value of X, is
denoted byy, and is given by

Y=b,+b, X.
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Y is also called the fitted value of Y. The diffece between the observed
value Y and the fitted valug is called the residual. Thus the residual for
the " observation is given by =Y, -V, .

The sum of the residual is zero, i}. ¢ =0. The estimate of error variable

i=1

? is given by

Analysis of Variance Approach
Analysis of variance (ANOVA) is highly useful teagoe for regression
analysis.

Partitioning of Total Sum of squares

The uncertainty associated with a prediction iatesl to the variability of
the Y observations as given by the deviatiorys-Y. The greater the
variability in the data, the larger will be the égtions v, - Y. The measure

of the variability of the observations is expresseterms of the sum of the
squares of the deviationg - Y, it is denoted byrss, Total Sum of Squares

and equals
TSS= Y (Y1’
It is also called the sum of squarels_labout the mé&as total sum of
squares can be expresseoznéts(i -Y)2 = i(\(i —\ﬁ)ﬂi(\ﬁ ~Y)?
i=1 i=1 i=1

> (Y, -Y,)?is called sum of squares about the regression erstim of

i=1
squares due to error (SSEi(\?i -Y)? is called the sum of squares due to
i=1
regression (SSR). SSR may be viewed as a meaktine effect of the
regression in reducing the variability of Y. If all the observations fall on
the fitted regression line, all deviations will bero. We have
TSS = SSE + SSR
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Partitioning of Degrees of Freedom

Corresponding to the partitioning of the total swmsquares TSS into
components SSR and SSE, we have the partitionintheo degrees of
freedom.

TSS :Zn:(\(i -Y)? hasn-1 degrees of freedom associated with it. SSE has
i=1

n-2 degrees of freedom and finally SSR has one daxreeedom.

Mean Square
A sum of squares divided by its associated degoédeedom is called a

mean square. The regression mean square, dempt®tER is given by

MSR = ? The error mean square is denoted by MSENag&l= =

ANOVA TABLE

It is helpful to summarise the information on suhs@uares (SS), degrees of
freedom (df) and mean square (MS) in the form tdlde called ANOVA
Table. The table below provides a basic formattiier ANOVA table for
regression analysis.

ANOVA TABLE
Source of | Sum of Squares | d.f. M.S.
Variation (SS)
Regrr]essm SSR (Y - V)2 1 MSR = SR
= 1
Residual Ny gy | N2 _ S
SSE _;(Y‘ Y) MSE -
Total TSS :i(Yi ¥y n-1
i=1
« 20V
MSE = 5 = — provides an estimate o > andr? = coefficient
LIS 2
L SR Z(Y' _Y) .
of determination is given by T - = ——and from this we can,
D (Y-Y)?

!
iy

obtain the correlation coefficient (r).
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EXAMINING THE FITTED STRAIGHT LINE

Standard error of intercept (bo) and the slope (b).
We note thab, =Y - b, X, andV (b,) is given by
D> XZIn
V(b)=—-F=*+——0"

n

Z(Xi - )7)2

i=1

and standard error s.e. of ib the square root of b

When o is unknown, the estimate of s.ep)(hhs obtained by replacing by
S, i.e.

se(b,)=| | —F—s
ny (X - X)?
the standard error of slope)ls given by

and is estimated by =
N)NCHDIE

Confidence Interval for b,
A (L-a ) 100% confidence interval for the parametgris given by
S

bl ita/Z n
1’Z(Xi - Y)2

where t,, is the value of the t-distribution with {2) degrees of freedom.

To test the Null Hypothesis:
H,: B, = B, we use the test statistics
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b, -8

s/ /i(xi -X)?

t =

The critical regions are

H,: RejectH, if
ﬁl<ﬁ t<ta
B> B t>t,
B *B t<-t,, OF
t>ta/2

Confidence Interval for Mean Response:

A (L-a) 100% confidence interval for the mean response-alx, is
given by

ERVAY:
Yitalzs 1+n(XO—X)
n Z‘,(Xi_i)2
i=1

wheret_,, is a value of thet - distribution with -2 degrees of freedom

Example

Air quality Index (AQI) is calculated hourly for @ertain area (town). The
SO, content and corresponding AQI given in the follogviable for 9 hours.
Establish a linear relationship between the twaaldes.

SO, ug/m® Air quality
index.
34 59
39 69
30 50
33 56
36 64
38 66
45 77
41 73
48 83
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SI. | Y | X XY X2 Y?

No.
1 34 | 59 | 2006 | 3481 | 1156
2 39 | 69 | 2691 | 4761 | 1521
3 30 | 50 | 1500 | 2500 | 900
4 | 33|56| 1848 | 3136 | 1089
5 36 | 64 | 2304 | 4096 | 1296
6 38 | 66 | 2508 | 4356 | 1444
7 | 45| 77 | 3465 | 5929 | 2025
8 | 41| 73| 2993 | 5329 | 1681
O |48 | 83| 3984 | 6889 | 2304

344|597| 23299 | 40477 13416

D Y=344 % X =597, ) XY = 23299 Y X?=40477 ) Y?=13416

b = 2 XY -nXY _ 23209- 9x £97/9) 3449)

- Y X2 - n(X)? 40477- 9 x 597/9)°
—A803337 _ 548326 and
87€ i N
b,=Y - b X

b, = 3822 - 3637229= 1.8499 We get
Y = 1.8499 + 0.548326X

Table of predicted values and residuals

Y | X Y Y -Y
34|59 | 34.20117 -0.20117
39 (69| 39.68442 -0.68442
30| 50| 29.26624 0.733765
33| 56| 32.55619 0.44381

36| 64| 36.9428 -0.9428

38| 66| 38.03945 -0.03945
45| 77| 44.07103 0.92897

41| 73| 41.87773 -0.87773
48 | 83| 47.36098 0.639016
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5= estimate ofo? 20-v)°

9-2
_ 4176433 _ oo
7
Total sum of squares (TSS)
= 20 - V)P = YN - (Y’
i=1 i=1
= 13416-9x (344/9)* = 2675556
Sum of squares due to residual
9 ~
= YUY, - Y,)? = 4176433
i=1
Sum of square due to regression
9 ~ —
= Y (Y-Y)? = 2633791
i=1
ANOVA TABLE
Source of SS d.f. MS F — ratio
variation
Regression 263.3791 1 263.3791| 441.4422
Residual | 4.176433 7 0.5966
Total 267.5556 9

R> = coefficient of determination
_ SS. dueto regression _ 2633791 _ 98439
Total sum of squares 267556

This suggests that 98.439% of the variation in Ydige to the linear
relationship.

Standard error o, = = > = 1/0'5326 = 0.026097
2
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>t
=i _ \/40477x 0.5966 _

Standard error ofp = s [—; = 175
1Y (X, - X)? 9 x 876
i=1
95% confidence interval fop, is given :
by * t,, — >
Z(Xi - )?)2

i=1
0.548326 + 2.36%0.026097
0.548326+ 0.610019

Multiple linear Regression

In most regression analysis problems, more thanralependent variables
are needed. For example the demand for the prodayidepend on price of
the product, the disposable income and price o$tibstitute product. In
such a case, three independent variables will bdate The model with k
independent variables is given by

Y=B+B X+ B, Xy +o o+ B X +00
The unknown parametegs , 3, 5,, B, are called the regression coefficient.

0 is the error component with(O)=0andV (0) = o °.
The method of least square is used for estimaliagpirameters. In this
case we will havex+1 normal equations to solve. We generally use a
statistical computer package for solving the midtiqggression problem.
We can also use such model for fitting polynomialdels. Consider the
guadratic model
Y=0, +BX+B, X"+ ¢
We can redefine the variables as, X X and % = X? and get
Y =8, + B, X, + B, X, +& and solve it as a multiple regression problem. If

we let Y denote the predicted value ®f the estimate of error variance

- 200 =¥’ | |
(g?) is given bys® = Iln—T where k is the number of independent

variables. It hasi-k-1 degrees of freedom. In this case, we measure the
strength of the relationship in terms of the midtiporrelation coefficient
(R) or the coefficient of multiple determination?R () gives the fraction
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of the variation in Y that is explained by multipkegression. Ris
computed as follows

> (7 -Y)*
R2 - in:l —
S, Y2

Example The following table gives the data on Air Qualibdex(Y) and
corresponding carton monoxide in mg¥@4) and NQ in pzg/m® (X,).

~

Y X, X, Y

38| 1 5 47.2375
40| 2 5 55.0625
85| 3 5 62.8875
59| 4 5 70.7125
40| 1 | 10 38.4625
60| 2 | 10 46.2875
68| 3 | 10 54.1125
53| 4 | 10 61.9375
31| 1 | 15 29.6875
35| 2 | 15 37.5125
42| 3 | 15 45.3375
59| 4 | 15 53.1625
18| 1 | 20 20.9125
34| 2 | 20 28.7375
29| 3 | 20 36.5625
42| 4 | 20 44.3875

(a) Calculate the least-square equation to predecAQl from SQ and
NO..

(b) Predict AQI if SQis 3 and NQis 6.

We assumethat =8, + B, X, + B, X, + €
To estimate the parametesgs, 5, andg,, we use the software package

Excel (MS Office)
It gives the following output:
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Multiple correlation coefficient (R ) = 0.80014 @oefficient of
multiple determination (§ = 0.640191

Anova Table

Source of S.S. dffi M.S F
variance
Regression | 2764.63 | 2 1382.3125
Residual 1553.81 | 13| 119.52404
Total 4318.44 | 15

Y = 481875+ 7825X, — 1755X,
Predicted value ofY forx, =3 and X, =6
Y = 481875+ 7825x 3 - 1755% 6 = 611325

Activity A
Distinguish between the mathematical relationshipd ahe statistical
relationship

Activity B
Identify at least three independent variable todjgtethe weight of an
individual and write down the multiple regressioondal.

Activity C  Specify the type of relationship that is expédcbetween fuel
consumption of a car and its speed. Write downmbdel and suggest how
you can estimate the parameters.
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The following data pertain to the demand for a patdn thousand of units
and price charged in rupees in eight differenttiocs

Price Demand

14 150
12 180
15 112
13 140
18 86

15 124
9 223

a) Obtain the line of best fit.

b) Determine the coefficient of correlation
c) Interpret your results

d) Predict the demand if the price is Rs. 10.
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CHAPTER - 10

INTRODUCTION TO DESIGN OF EXPERIMENTS

An experiment is the planning and collection of sweaments or
observations according to a prearranged plan watgrolled conditions for
the purpose of obtaining factual evidence suppgrtn not supporting a
stated theory or hypothesis.

In a statistically designed experiment the layoot tonducting the
individual trials is decided on statistical bass facilitate subsequent
analysis.

Role of Statistically designed experiments:

The main reason for designing an experiment gStist is to obtain
unambiguous results at a minimum cost. Obtainingl v@sults from test
programme calls for sound statistical design. alet,fa proper experimental
design is more important than sophisticated skedisanalysis. Results of a
well planned experiment are often evident from seangraphical analysis.
However, the world's best statistical analysis camescue a poorly planned
experimental programme.

The need to learn about interaction among varialeled to measure
experimental error are some of the added reasarstdbstically designing

experiments. The designing of an experiment iserggdly the

determination of the pattern of observations tocbdected. A good

experimental design is one that answers efficiesmi¢t unambiguously those
guestions which it is intended to resolve and &has the required
information with a minimum of experimental effort.o do this, the problem
must first be posed as succinctly as possible|sasaalist of questions to be
answered by the experiment must be correctly faatedl Any experiment
must be set up to answer a specific question orstoues. Precise
information of the question ( or questions) to besveered enables the
experimenter to state his hypothesis more effelgtivéhe major and minor
variables which are supposed to have influencehenptocess have to be
identified and the ranges within which these arbddested will have to be
determined. It is also to be ascertained befoeectmmencement of the
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experiment whether the factors are independeniraftions of other factors.
The experimenter should also know before hand wddtaneous or
disturbing factors must be controlled balanced mimmzed and the kind of
control that is desirable. To obtain the best mio$t economical design for
an experiment some prior estimate of the experiateatror would be
required and that must be estimated. The expetanenust also set a clear
goal as to what improvements are acceptable. herotvords to be of
technical and practical importance, he should $pdle acceptable degree
of difference between the effects and consequenceét should also set
failure risks and consequences. For instance, chepsable risks of failing
to find an improvement of size noted above andrible of claiming an
improvement, when none exists, must be specifiégdréehand. When the
experimenter has to deal with effects which amgdacompared with
random errors, intuitive judgement may be satisigcbut when the errors
are appreciable such a procedure may be misleadiygparent effects,
attributed by the experimenter to such factorseakds varied may in reality
arise solely through the accidental fluctuation® da the errors. It is
difficult to decide whether a particular resultgenuine or due to error.
Statistical methods alone in such situations, aftemd and logical means of
treatment of data and there can be no alternativegtd statistical tests.
These methods should therefore be regarded asfptme technique which
industrial scientists should learn in order to death their problems
effectively. Statistical tests of significance afeen required to establish the
significance and extent of each of the regulatiagable with the lowest
number of trials. In such tests it is usual totplage that the effect sought
does not exist, and to see whether on this hypstiies observed difference
can be attributed to chance.

In summary, planned experimentation on Statisbeals is necessary under
the following situations:

I Even with strict adherence to the process spatibn
evolved over a period of time or borrowed from fgre
collaboration, the product quality or productivitgmain
unsatisfactory.

. To confirm the desired results for an altermati
design/process assembly methods with minimum data
collection.

lii.  To distinguish between critical factors (whicteed to be
controlled within narrow limit) and non-critical dtors
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(which do not require to be closely controlled)tevent or
minimize the occurrence of defective product.

Ilv.  To determine the optimum process conditions.

V. To locate source of variability.

vi.  To correlate process variables with productrabgeristics

vi. To compare different products, processes, nmad)
materials and methods.

viii. To evaluate process capability.

iXx.  To test different hypothesis and theories.

Advantages of Statistically Designed Experiments:

Evaluate the experimental error.

Isolate the effect of factors in a quantitatmanner.

Evaluate the interrelationship or interactiobwsen factors.
Reduce uncertainty from conclusions.

Extract maximum information from given data.

Predict the extent of improvement possible dlrerexisting
performance.

7. Obtain answers to questions with optimum cokhatvn risks.

Ok WNE

BASIC PRINCIPLES OF EXPERIMENTATION:

Any experiment is required to establish or dispregme theory formulated
about a process. Verification of the theory carbegabsolute and if only it
can be shown that the observations are compatilite the theory within
reasonable limits of error to which the observaiane subjected, we can
assume that the hypothesis made are correct.

Experimental Error: It is well known that the results of no two
experiments will be in complete agreement despigryeeffort to maintain

the same conditions. This is due to a large nundfefactors beyond

economic control. These differences known as expertal errors

introduce a degree of uncertainty into any conolsithat may be drawn
from the results of the experiment. The experinleateors can be kept
within check by following three cardinal principleSexperimentation .
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Randomisation, Replication and Local Control:

Randomisation: It consists of scheduling the experiments withdhterent
treatments in a random manner. For example, ifrivethods of processing
are to be compared and two machines are availablethke trials, the
comparisons may be biased by machine differenfeany. This bias is
removed by allocating machines to the methods mahdothus giving
validity to the conclusions drawn on the basishaf tesults. Randomisation
Is described as an insurance against extraneotwdatt is to balance the
effects of unknown variations in materials, equiptsetime etc over which
we have no control, to prevent any factor being uindfavoured or
handicapped . Randomisation assures validity aifssical tests. Random
Number Tables can be used for this purpose. Texasrand experimental
units are numbered and then allotment of one terothmade using Random
Number tables.

Replication: It is repetition of experiments. The replicatimhobservations
helps in estimating the experimental error. Timsturn aids in deciding
whether the observed differences in responsesuaréodthe treatment effect
or due to chance. Also such replication incredbessensitivity of the
experiment i.e., the power of detecting true ddferes between treatments.
Number of replications will depend on the magnitadexperimental error
and real effect of the factors, desired to be detkc

Local Control or Blocking: To obtain maximum sensitivity it is necessary
that different trials are subjected to the samekdparind conditions to the
extent feasible. In practice, it may be diffictdtensure such uniformity due
to natural variability of material, environmentabnditions etc. However, it
may be possible to split up a set of treatmentiwitlsmall groups where
such variations are less. This is known as Loaait®l. One method of
introducing Local Control is to see that all trisdse repeated the same
number of times under different conditions. Tlsiknown as Balancing. It
helps in taking control of heterogeneous experialesanditions. Thus local
control is the technique of balancing the effeckrmown disturbing factors
and thereby reducing the error. It ensures unityrim the background
conditions of comparison by isolating known distogo factors. Local
control is ensured by dividing the experimentaltsimnto smaller groups,
within which the variations are likely to be ledsman that of the set as a
whole. Local control makes an experiment more ifeasthus avoiding
need for a large number of repetitions or replorati
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TERMINOLOGY

FACTOR: A variable or an attribute which influences orsisspected of
influencing the characteristics or response bemgestigated e.g., speed,
feed, temperature, operator, material etc.

Types of Factors:Qualitative and Quantitative

Qualitative Factors: The level of qualitative factors are limited inmioer
and have no intrinsic order for example operatmechine, type of material
etc.

Quantitative Factor: Is the one that can take continuum of possibleaslu
e.g., temperature, speed

LEVEL: The values of a factor being examined in an expart for
example, three levels of temperature may be:

Level 1:  80BC

Level 2:  856C

Level 3:  906fC
The levels may be chosen at fixed values or they rba chosen from all
possible levels by a random process. Unless otkemmentioned, we shall
consider only fixed levels.

TREATMENT: One set of combination of levels (one from eadattoig
employed in a given experimental trial e.g., anegxpent conducted using
temperature 80C. Furnace F and operator B would constitute one
treatment combination. To investigate the effelctdifferent factors we
conduct trials with different treatments.

EXPERIMENTAL UNIT: Basic units subjected to trial. The experimental
units are allocated to different treatment combamst to facilitate
conducting trials with different treatments thatnsterial, equipment and
other facilities provided for conducting each tisahn experimental unit.

RESPONSE: Numerical (or attribute) result of a trial with giv treatment

e.g., outputlyield per shift/day, dimension, stténg hardness,
success/failure, defect rate, rejection rate etc.,
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EFFECT: Change in response due to changes in levels dathers.

MAIN EFFECT: Estimate of the effect of a single factor obtained
independently of the other factors.

INTERACTION: If the effect of one factor is not the same afedént
levels of another factor, interaction between the flactors exist.

EXPERIMENTAL ERROR: It is the variation in response caused by
conditions not controlled in experiment due to eitignorance or inability
when the same treatment is repeated.

STATISTICAL APPROACH TO EXPERIMENTATION

Statistical approach to designing and analyzinggreriment requires that
the experimenter must have a clear idea in advahacghat needs to be
studied , what and how the data is to be coltkated type of analysis to be
done. This calls for a detailed planning of tlkpeximental study process.
The various steps involved in designing and condgcexperiment are
given below:

1. Defining Purpose and Scopsdt is important that we develop a clear
and a specific statement of the problem to be studilt must be
accepted by the team members. It is necessargttalliobjectives of
the experiment including hypothesis to be testatl guestions to be
answered. The scope of the experiment in ternpsarfucts, markets,
customers, processes etc to be covered must alslednty identified
and stated. An unambiguous statement of the probleen helps in
better understanding of the process and arrivirigeafinal solution.

2. Process AnalysisThe purpose of the process analysis is to study the

related processes, inputs, outputs and measurenvaived to have
a clear understanding of the process functioningl aontrol

mechanisms used. Considerations should also @ gov customer
feedback and complaints received. It helps in gatg all

information about the systems relevant to desigmhgxperiment.
Use of process flow chart is often made for cagyout process
analysis. At this stage the experimenter will heagiscovered which
factors are important and worth investigating.alfo provides some
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understanding of which responses need to be caesidm the
objective of the study and whether the runs ofggtaxess need to be
grouped or not.

3. Choosing Factors to StudyHere, we must decide on the factors of
investigation. Making a cause and effect or fishddiagram of the
problem will help identify possible factors. Inetlinitial study, we
wish to include as many factors in the design asipte. Such initial
studies are called screening experiments. Scrgeniperiments help
in the elimination of many factors from further smeration because
of their minimal effect on the response variabl®ge use the factors
which various studies or experiences have showhetanfluential.
Often we consider more levels of a smaller numifefactors to
better characterize the relationship between tlspomses and the
remaining factors.

After having selected the factors to be studied,fiwdhe range within
which each factor can be experimented. The fadto@n experiment
may be either quantitative or qualitative. In casguantitative factors,
we must consider how these factors are to be dtedrat the designed
values and measured. We must also fix the nunfderels or values of
the factors to be used in the experiment. Theldeusmy be chosen
specially or selected at random from the set opadisible factor levels.
In case of linear effect of a factor, two levelsadactor are adequate. If
we wish to study quadratic or non linear effectaofactor, we require
minimum three levels of a factor.

4. Choosing the Responsdresponse(s) is the observed system output in an
experiment or the dependent variable(s) of the mx@mt. Response
selected must be relevant to the objective of tluieys Taken together
responses represent all the aspects of qualitguptvity and performance
we wish to study. Response of an experiment doellcheasured on :

Continuous scale:It should also be decided how each response ito b
measured, the type of instrument to be used, acgwanad least count of the
instrument needed. The capability of the measun¢mecess needs to be
assessed.
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OR

Binary: The response is classified as good or bad. Binasgpanse
drastically reduces the power of the experimenggigh to detect the effect
of change.

OR

Subjective Rating: Categorise the response in categories with intrinsi
ordering of the categories. For example resporeebr classified as good,
normal, or bad. Response can also be obtainedLth@oint scale, say 1 to
10 (bad to good).

In case of binary and subjective rating we neestdadardize the inspection
process in order to reduce and minimize inspecoors.

5. Choice of Experimental Designin this step, we decide on the statistical
design to be used for conducting the experimeite Aumber of trials to be
made, the composition of each trial and the nunabeeplications needed
for each trial. We must also determine the oraemhich data will be
collected and the method of randomization to bedu$e also involves
writing down the statistical model and finding eutat statistical methods to
be based for carrying out data analysis. In fiximg size of the experiment,
we must strike a balance between the statistidatiesicy and cost of
experiment.

6. Conducting the experiment: This step involves conducting the
experiment and actual data as per plan prepardteiprevious steps. Itis
important to monitor the progress of the experingnt to train and involve
concerned persons for better conduct of the expeimProper care should
be taken while fixing levels of the factors, ankllirtg measurements on the
response variables. It is important to maintainfasm environment
conditions and not allowing factors which do natnfi part of the
experiment to vary. All non experimental factorsisnbe maintained at
constant levels throughout the experiment.

7. Data Analysis: Once the experiment has been conducted and data
collected, we go into analysis of data. Statistrnathods should be used for
analyzing the data. We first verify the modelusmsption made about the
data using appropriate techniqgues. We commonlymetbods of testing of
hypothesis, analysis of variance, regression aisadts for analyzing data.
Graphical methods are also frequently used and @haymportant role in
analysis.
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8. Conclusion and RecommendationOnce the data analysis is over, we
draw conclusions about the results and factors. Sthastical conclusion
must be physically interpreted and practical sigarice evaluated. Based on
this, recommendations of the findings are madee Tbke of graph and chart
Is a very effective way to make presentation ofrdsailts and conclusions to
the management. If necessary, further experimantive planned.

COMPLETELY RANDOMISED DESIGN
Description:

These are single factor experiments with no rdgiricof randomization.

The different levels (quantitative, qualitative) tfe factor are allotted at
random to different experimental units. The numifennits for each level

of the factor is determined from cost consideratiod the power of the test.
It is required that the experiment is performedaimandom order so that
environment in which the treatments are used isra®rm as possible.
Such experiments are called Completely Randomissign

When Used

I The experimental units are homogenous, or

. The pattern of heterogeneity in the experimembaterial is not
known and hence it is not possible to group theto smaller
homogenous blocks.

Data Layout: Here we have k different treatments to compare #hd
treatment is repeated times. Let Yij denote the response on thé

experimental unit(j = 1,2,---,n) corresponding to thei"™ level
(i=12,---,k) of the experimental factor or treatment. The catgpbata for k
treatments are as follows:
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Treatments (levels)
1 2 ... j k
_ Yiz. Yo1 o Yi1 Yk1
Observation
Yiy Yon, Yin, Yin,
Number n n, - n; Ny

The layout of data is also known as one-way clasgibn because only one
factor is being investigated.

Model: The statistical model describing the observatiens i

yij = u+1 + ¢ fori=212 - kandj=12 -, n

Where y; is the j" observation on the" treatment,/ is the common

effect for the whole experiment, represents the effect of the treatment
and g represents the random error present in theobservation on the
i"treatment.

The errorg,is usually considered a normally and independedisyributed

(NID) random effect whose mean value is zero andsah/ariance(az) is
the same for all levelsy is always a fixed parameter, ang 7, ,---,7, are

considered to be fixed parameters, if the levelgadtment are fixed. It is
k

also assumed thap_ 7, =0.
i=1

If the k levels of treatments are chosen at randbmr 's are assumed NID

[0,0;). Whether the levels are fixed or random depemds thow these

levels are chosen in a given experiment.
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Hypothesis and Assumptions:The analysis of a single factor completely
randomized experiment usually consists of a one-areslysis of variance
(ANOVA) test where the hypothesid,:7; =0 for all i is tested. If this
hypothesis is not rejected, then no treatment tffeexist and each
observationy;; is made up of its population mearand a random errog; .

If the null hypothesis is rejected, we shall beefasted in grouping or
ranking ther,'s through multiple comparisons.

In applying, the ANOVA techniques, the basic asstiong are :

1. The process is in control i.e., it is repeatable

2. The distribution of population being sampledasmal.

3. The variance of the errors within all k levelk tbe factors are
homogeneous.

The lack of normality in the dependent variable oésl not seriously affect
the analysis when the number of observations gatrtrent is the same for
all treatments.

Rationale for Analysis of Variance:We use the following notation

ni
Yio= 2. Y;j = Total response of i™ treatment
=1

k k n
Ym= 2 Vit 2 2V
i=1 i=1j=1
=Total response for all treatments

It can be shown that
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n

3

| (Vim‘ym)z + 2 (Yij_yiD)z

Kk
i=1 j=1

I
[

K kK n
= glni (Vi - 7m)2+ > 2 (Yij—ViE)Z

i=1 j=1

th

whereyjj= i~ treatment mean an#i= the grand mean. This may be

referred as the fundamental equation of analysiadance. It shows that
the total sum of squares of deviation from the dramean is equal to the
sum of squares of deviations between treatment snaad the grand mean
plus the sum of squares of deviations within trestdis i.e.,

SStotal - SStreatment + SSerror

Where SS,i4 is total sum of squares SSyeatmentis called the sum of

squares due to treatment &8¢, is called the sum of squares due to error

k
(i.e, within treatment). Since>_ nj = N in all SS;m has N - 1 degrees of

1=1
freedom SSieatmenthas k - 1 degrees of freedom as the experimenk ha
level of a factor or k treatments and £ has N - k degrees of freedom.

Each of sum of squares divided by the correspondé@ggees of freedoms is
called mean square. Mean Square (M.S.) due tatntent

— SSireatment

(k-1)

Mean square due to error provides an estimaterof eariance (o2 ).

S5
and Mean Square due to error equal (Nemlir)

Further it can be shown that if each of the tersan of squares in the
above equation is divided by its appropriate degd freedom, it will yield
two independent chi-square distributed unbiasddasts of same? when
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H, is true, their ratio will be distributed as F distition with k - 1 and

ini -k degrees of freedom i.e.,

i=1

él m (% - ) 2/ ‘1)} { i nZ (y” _) 2 {élni —kJ]

i=1j=1

follows Fic—1 , > nj — kdistribution.

The critical region is normally taken as the upfaalr of the F distribution
(Table A) rejectingHq, if F > F, wherea is the area abovg,.

ANOVA Table : The actual computation will be much easier if vge the
following relations.

>on (yi - ym]) =y - - N = Sumof squares due totreatment
' i=1 N

k n 5 k n T2

2 X (Yij —Vm) =2 2 Vi - N = Total sum of squares

=1 j=1 =1 j=1

n
whereT; = > y; and T=3Tj and N =n + np + -+ + ng
j=1
2
The termTW is called the Correction Factor (C.F.)

The error SS (or within treatment SS) can be obthly subtraction . Then,
the ANOVA table may be set up as follows.

Source of variance d.f. S.S. M.S F
K 2 2
Between Treatments k-1 ZL _r S catment MS caiment
i=1 ni N k_l MSerror
Within treatment/Error N - kK * (?\ISME)

Total N-1 i nz Y~

=1j=1
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* obtained by subtraction

Paired Comparison of Means:

When ANOVA indicates significant differences betweeeatment means,
we shall be interested in making ordered groupgseaitments such that they
may be considered homogeneous within a group. INgue best method
exists but one useful method is Duncan's Multipdede Test. The steps are
as follows:

1. Arrange the treatment means in ascending order.

2. Find the value of the last significant studesdisanger, (p, f) from

Table-B foreachp=1, 2,...... , k whegeis the significance level, p
Is the number of means lying within and includimgptmeans being
compared and f is the number of degrees of freeassnciated with
MSE , the error mean square.

_ IMS;
3. For each p, find the least significant rangeRa§ra(p’f) 4

where n is the sample size for each treatment. uRegual sample
sizes, the least significant range should be caledl as

Ry =ty (p, f)JMSe.
4. Consider any subset of p adjacent sample mebkes.y, -y, denote
the range of the means in this subgroup. The ptipnl meansy and
u, are considered to be different if
Yi —Yj >Ry for equal sample size

S 2nn, .
or (3-y,) >R, for unequal sample size.
n+n

i j

5. If, within a subgroup, the most extreme pdimeans is found to be
not significantly different then all means withthe subgroup are
assumed to be equal with no further testing requirEirst we compare
the largest mean with the smallest mean. If thexse found to be
significantly different then compare the largestl dhe second smallest.
These comparisons are continued until all mean® Heeen compared
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with the largest mean. The same process of cosgrais repeated for
the second largest mean and is continued untilcasible pairs of means
have been compared.

6.Summarise the results by underlying any subseddpdicent sample
means that are not considered to be significaritigrant at the chosen
level.

7. If the sample sizes are all the same, then tisane question as to the
validity of the groupings obtained. However, onesinbe careful when
sample sizes are unequal. In such a situation,padisible paired

comparisons should be made.

Example : Four different air-injection systems are being stigated for
their efficiency. It is desired to test if thesesignificant difference between
them. Five items of each system are taken anéfflegency of injection in
each of them measured. The results are as follows:

Efficiency in System

A B C D Total

35 39 39 23

34 37 27 28

46 17 35 21

30 31 29 17

40 21 20 21
T 185 135 150 101 580
y 37 27 30 22 29.0
>y? 6997 3901 4716 2484 18098
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2 2
Correction Factor —TN = (580)

= 16820

_l [1852 + 135 + 150¢° + 110 ] —-16820=590
SShreatment =5

Total SS £35 + 34 + ... + 27 | - 16820= 1278

The ANOVA table can now be set up as

ANOVA Table
Source of variance df. S.S. M.S. F
Between systems 3 90 5 196.67 4.57
Within Systems 16 886 43.0
Total 19 1278

Fos.3 16=324 and Fp; 316 =529

There appears to be significant differences ambagystems. We now
proceed to group the systems on the basis ofdlrerage as per the
Duncan's Multiple Range Test Method.

The sample means in ascending order are

yD yB yC yA

22 27 30 37

Fora =005 f =16 n = 5 and MS. = 430, we get from Table - B
p 2 3 4

r,(p, f) 2998 3144 3235

R, 879 922 949

The results of comparisons of the treatment meaas follows
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Treatment P Re Range of Reject

pair Treatment | y=uy, ?
means

A-D 4 9.49 | 15 Yes

A-B 3 9.22 | 10 Yes

A-C 2 879 | 7 No

The first group is therefore

D B C A

C-D 3 9.22 8 No
The second grouping is

D B A

C-B 2 NotNeeded No
So the groupings of the treatment means are

First Group : A, C Second Group :C, B, D

FACTORIAL EXPERIMENTS

In Industrial applications frequently we know tlsatveral factors may affect
the characteristics in which we are interested wadwish to estimate the
effects of each of the factors and how the effécine factor varies over the
level of the other factors. For example quality veéld joints may be
affected by type of electrode used, current voleuyd gap etc. We are often
tempted to test each of the factors separatelyinmldll other factors
constant in a given experiment but with a littleught it might be clear that
such an experiment might not give the informatiequired. The logical
procedure would be to vary all factors simultangousthin the framework
of the same experiment. When we do so, we have wghaow widely
known as dactorial experiment.

The factorial experiments are particularly usefulthose situations which
require the study of the effects of varying twomore factors. In a full
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factorial experiment all combinations of the diffat factor levels must be
examined in order to elucidate the effect of eadtdr and their interactions.
Advantages of a Factorial Design:

1. It increases the scope of the experiment andsgimformation not
only on the main factors but on their interactiafso.

2. The various levels of one factor constitute icggpions of other factors
and increase the amount of information obtainedlbfactors.

3. When there are no interactions, the factoriasigie gives the
maximum efficiency in the estimate of the effects.

4. When interactions exist, their nature being wwkm, a factorial
design is necessary to avoid misleading conclusions

5. In the factorial design the effect of a factsrestimated at several
levels of other factors and the conclusions holdr@v wide range of
conditions.

Factor : A variable which is believed to affect the outcoareresponse
of the experiment.

Level :Various values of a factor examined in an experimen

Treatment Combination: A combination of levels of the factors in the
experiment.

Experimental Units : Items used in an experiment are referred as
experimental units. Examples are machines, patieats, plots, engines
etc.

Response:A response is the numerical result observed foardiqular
treatment combination.

Effect : The effect of a factor is the change in responselyred by a
change in the level of the factor.
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Main Effect : Average effect of a factor.

Interaction Effect: If the effect of one factor is different at diffete
levels of the second factor then the two factoessaid to interact.

Experiment with all Factors At Two Levels : (2¢Series)

In this case each factor is at 2 levels and theiagbk factors in all.
These levels may be quantitative or qualitativeshsas two machines,
two operators, the high and low level of a factércomplete replication
of such a design requires2x2x---x2=2“ observations and is called

2“factorial design.
Notation:

Let A, B, C denote the factors; the levels of ALB.. are denoted by
D), a; (1), b; (1), c; ...... respectively. As a contien, the lower case
letters a,b,c ....denote the higher level of thediect The lower level is
signified by the absence of the correspondingrietiéhus the treatment
combination bc, in &° factor experiment, represent the experiment in
which factor A is at low level and factor B and (@ at high level. The
treatment combination which consists of low levél all factors is
represented by (1). We shall extend this notdtptetting (1) , (a), (b),
(ab), (c) ,... be the treatment total corresponding ekperimental
conditions (1), a, ab, c, respectively.

Main effects and interactions : ¢* Design)

Consider an experiment involving two factors: Rmeectime (A) and

amount of catalyst (B) each at two levels - lowhagh. The effect of

these two factors on the chemical yield is to lelisd. The results are
as follows:

Table 1
Reaction Time (A)
Low High
1) (a)
Low (1) | 40 50
Catalyst (B)| High (b) | 60 72
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Effect of reaction time at low level of catalyst)(B 50 - 40 = 10
Effect of reaction time (A) at high level of catalyB) =72 - 60 = 12

10 + 12 _

Main effect of reaction timeA= 11

Alternatively, it can be thought as difference betw the average response
at high level of A and the average response dbilidevel of A.

50+72 B 40 + 60
2

Main effect of A = =11

That is, increasing reaction time (A)from low lewelhigh level causes an
increase of 11 units in the yield. Similarly

Main effect of B = 60;72 - 40—;50 = 21

In some experiments, we may find that the diffeeemcresponse between
the levels of one factor is not the same at alklewf the other factors.
When this occurs, there is interaction betweenf#otors. For example
consider the response data in the Table Shown below

Table 2
Reaction Time (A)
Low High
1) (a)
Low (1) | 40 60
Catalyst (B)| High (b) | 70 32

Effect of factor A at low level of B =60 40 = 20
Effect of factor A at high levelof B= 32 70 =- 38

Since the effect of A depends on the level choeefaftor B, we say that
there is interaction between A and B. These idesg be illustrated
graphically.
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Factorial Effect Without Interaction
R
e 70 B2
> /
p 66
0
n
S /
e

Bl

| A2
Factor A

>_
[

Factorial Effect with Intetmamn

R 70

e

s 60 B1
P

o 50

n 40

S

e 30 B2

Al A2

Factor A
It is often convenient to write down the treatmeonbination in the order

(1), a, b, ab. This is referred to as standagéror
Main Effects and Interactions expressed in terfrieeatment total for 2
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Factorial Divisor
Effect 1) @ (b) (ab)
M + + + + 4r
A - + - + 2r
B - - + + 2r
AB + - - + 2r

2

Where r is the number of replication. Sum of Sgqador any effect 214-1_
r

where T is factorial effect total.

Example: Consider the experimental data given in table |

Main effect A= (a) + (ab)zr_ (1) - (o)
50+ 72 - 40 - 60 _
2

11

Main effect of B =21+ (8b) =~ (1) - (a)

@) + (ab) - (a) - (b)

Interaction AB =

2r
40+ 72 -50-60 _
2

1
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Sum of squares due to main effect of A

_@)+(a0)-@W -0 _(22* _,;
4

4r

Sum of squares due to main effect of B

Sum of squares due to AB

(2)*
4

2° Factorial Design:

(42)°

= 441

=1

Main Effects and Interactions expressed in ternmtse@itment totals

Factorial [ (1) (@) (b) (ab) (c) (ac)bc) (abc) | Divisor
Effect

M + + + + + + + + 8r

A - + - + - + - + 4r

B - - + o+ - -+ + 4r

AB + - - + + - - + 4r

C - - - - + + o+ + 4r

AC + - + - - + - + 4r

BC + + - - - -+ + 4r
ABC - + + - + - - + 4r
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Where r is the number of replications. Each faetorffect has same

20°
r

factorial effect total as given by the above table.

variance

2
. Sums of squares of any factorial effectgis where T is
r

Yates' Method of Computing Factorial Effects:

Yates has developed a systematic tabular methodoimputing factorial
effects. The steps in the computations are agvistl

1. Arrange the treatment combination in standadeior That is, for one

factor we simply write (1) , a. For two factorgddal ab derived by

multiplying the first two by the additional lettbr For three factors

add c, ac, bc, abc, derived by multiplying thetfioair by the

additional letter ¢ and so on.

Place the corresponding treatment totals iméxt column.

Derive the top half of the column (1), by addihg response in pairs

Obtain the lower half of the next (column 1)thking the differences

of the first member of each pair from the seconeaoh case.

5. Repeat the process k times until we reach cokimhere k is the
number of factors involved in the experiment. @aiuk gives
factorial effect totals.

6. Obtain the factorial effect by dividing the facal affect by r x 2kt

where r is the number of replicates.
7. Sum of squares due to factorial effects is alethiby dividing the

squares of factorial effects total Wr

Hwn

Example: Consider the foIIowing’Z3 factorial experiment, designed to
determine the effects of certain variables on #tiability of a rotary
stepping switch. The factors studied were:

Code  Factor Low Level High Level
A Lubricatio dry ludated
B Spark suppression no yes

C Current 0 0.5 amp
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Each switch was operated continuously until a nmaifion occured, and the
number of hours of operations was recorded.

The whole experiment performed twice, with follogyiresults:

Hours of Operation

Experimental Rep.1 | Rep.2 Total
(1) 828 797 1625
a 997 948 1945
b 994 949 1943
ab 1069 | 1094 2163
C 593 813 1406
ac 773 10260 1799
bc 748 970 1718
abc 1202 | 1182 2384
Total 7204 | 7779 14983
Treatment |Treatment (1) | (2) | (3) Effect| S.S. F -
Combination| Total Ratio
(1) 1625 3570 7676| 14983| 936.44
a 1945 4106 7307| 1599 | 199.8§ 159800.06 15.21
b 1943 3205 540 | 1433| 179.12128343.06 12.21
ab 2163 4102 1059| 173 | 21.62| 1870.56, 0.18
C 1406 320/ 536 -369 -46.12 8510.06 0,81
ac 1799 220 897 519 64.88 1683506 1,60
bc 1718 393| -100 361 | 45.12| 8145.06/ 0.75
abc 2384 666 273 373 46.62 8695.56 0[83

Sum of Squares due to total

=14446895-

(14983 2

= 4162519375
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Sum of Squares due to treatment

_ 28725685 1acoe4%5 = 33219044

Sum of Squares due to error = 84052.50

Error Variance §4—052 = 10506563

8

From Table A, Fos1, s Value at 5% level of significance is given by%.3
Hence main effects of factor A and B have sigafficeffect and remaining
effects are insignificant.



CHAPTER - 11
ENVIRONMENTAL SAMPLING

This chapter discusses means of obtaining dat&rgironmental studies.
Either the data will come from a planned experim@nthe lab or from
sampling done in the field. This chapter discusss®ral methodologies for
obtaining data in a scientifically valid way viangaling.

One of the key points to understand is that a \aditipling plan is needed in
order to obtain useful data. If the scientist syngbes out into the field and
picks sites to sample with no plan ahead of tilhentbiases and other
problems can lead to poor or worthless data.

Example: Estimate the number of trees in a forest wittadigular disease.
How can we do this? One idea is to divide thedbieto plots of size 1 acre
say and then obtain a random sample of these acoest the number of
diseased trees in each sampled acre. From thidesawg can use statistical
principals to estimate the number of trees in tredt with the disease.

Some of the most well-known sampling designs usedopriactice and
discussed here are as follows:

* Simple Random Sampling

» Stratified Random Sampling
e Systematic Sampling

* Double Sampling

* Multistage Sampling

Introduction
First, we introduce some terminology and basicsdea
Census: This occurs when one samples the entindatam of interest.

The United States government tries to do this ed@ryears. However, in
practical problems, a true census is almost newssible.
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In most practical problems, instead of obtainingcemsus, a sample is
obtained by observing the population of interesgpédfully without
disturbing the population. The sample will genlgrlke a very tiny fraction
of the whole population.

One must of course determine the population ofeste- this is not always
an easy problem. Also, the variable(s) of interestd to be decided upon.

Element: an object on which a measurement is taken.

Sampling Units : non-overlapping (usually) collections of elengeiffiom
the population.

In some situations, it is easy to determine thepsiag units (households,
hospitals, etc.) and in others there may not bé-defined sampling units
(acre plots in a forest for example).

Example. Suppose we want to determine the concentrati@abfemical in

the soil at a site of interest. One way to do ihi® subdivide the region into
a grid. The sampling units then consist of the foimaking up the grid. The
obvious question then becomes - how to determirtesige. One can think
of the actual chemical concentration in the soiltted site varying over
continuous spatial coordinates. Any grid that iscuwill provide a discrete
approximation to the true soil contamination. There the finer the grid,
the better the approximation to the truth.

Frame: A list of the sampling units.
Sample A collection of sampling units from the frame.
Notation:

N Number of Units in the Population

n Sample size (number of units sampled)
y Variable of interest.
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Two Types of Errors.

e Sampling Errors - these result from the fact thatgenerally do not
sample the entire population. For example, the gammegan will not
equal the population mean. This statistical ersdirie and expected.
Statistical theory can be used to ascertain theegegf this error by
way of standard error estimates.

* Non-Sampling Errors - this is a catchall phrase toaresponds to all
errors other than sampling errors such as non-nsgpand clerical
errors. Sampling errors cannot be avoided (unlessnaus is taken).
However, every effort should be made to avoid remyding errors
by properly training those who do the sampling eacefully entering
the data into a database etc.

Simple Random Sampling (SRS)

One of the simplest sampling designs availableasstmple random sample.
Simple Random Sample : is the design where eactesoln units selected
from the population of sizH has the same chance (i.e. probability) of being
selected.

Note: It is possible to have a sampling plan where eaicthe possible
samples considered have the same probability etsehbut the sampling
plan is not a SRS.

Example: Suppose the frame for the population consistsanfipling units
labeled A, B, C, and D. Thul,= 4 and we wish to obtain a sample of size
= 2. Then there are 6 possible random samplez®esi

AB, AC, AD, BC, BD, CD

A simple random sample then requires that eachaxe 6 possible samples
have an equal chance of being selected. In othedsythe probability of
obtaining anyone of these 6 samples/& 1

Now, if we only considered two possible samples: &BCD, each with

probability 12, then each sampling unit has a probability of dfbeing
selected. But this is not a simple random sample.
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Therefore, a simple random sample guarantees #tht ®ampling unit has
the same chance of being selected. On the othel hasampling plan where
each unit has the same chance of being selectaat isecessarily a simple
random sample.

Question How do we obtain a simple random sample? The ansieasy —
simply label all the sampling units in the popwatias 12,...,Nand then
pick at random from this list a set minumbers. This sampling is generally
donewithout replacementThis is akin to putting the numbers 1 through
on a slip of paper, putting them in a hat and tamom pickingn slips of
paper from the hat. Of course, actually writing thems on a slip of paper
and picking from a hat is quite tedious, especi@lN is large. Instead, what
is done in practice is to have a statistical orhmatatical software package
generate a random sample automatically. Many bowkse use of a table of
random digits but these tables are rather arclmalgtas suggested to simply
use a computer for the task of choosing random kmmp

Estimating the Population Mean

Let

1il and o2 !
L= — . and of = —
=N &Y N1

i=1 1

N ‘/
(l}i - 11»)2
=1

denote the population mean and variance respegtiVdlese population
parameters are estimated by

1 n 1 T

=—> y;, and §* = > (i — 1)

‘N‘

n—1

the sample mean and variance respectively. Usimgbowtorial counting
technigues, it can be shown that the sample nyesnunbiased for . That

Is, the average value gf over all possible samples of siaés exactly equal
to x. Additionally, the sample varian& is unbiased foe?:

Furthermore, using counting techniques, it alsto¥esd that
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var(y) = {o?/n}(1 — n/N).

The factor(1-n/N) is called the finite population correction factwhich is
approximately equal to 1 whemis a tiny fraction ofN. The square-root of
the variance ofy is the Standard error of the sample mean. Thisuslly

estimated by Estimated Standard Error of the mean:

%.ﬁll"" | —n/N.
Example: Consider two populations of sizH4 = 1,000,000 andN2 = 1000.
Suppose the variance of a variaplis the same for both populations. What
will give a more accurate estimate of the mearheffopulation: a SRS of
size 1000 from the first population or a SRS oksif) from the second
population? In the first case, 1000 out of a mili ¥1000" of the
population. In the second case, 30/1000 is 3% a population.
Surprisingly, the sample from the larger populai®more accurate.

Confidence Intervals. A (1-af100% confidence interval for the population
mean can be formed using the following formula:

it taan 15_'1”[ ) = Ut ten 1ls/ Jn) \;.-"'l - n/N,

wheret, ,,, is thea /2 critical value of the-distribution onn-1 degrees of

freedom. This confidence interval is justified Iapplying a finite
population version of the central limit theoremhe sample mean obtained
from random sampling.

Estimating a Population Total

Often, interest lies in estimating the populatiotal, call itT,. For instance,
in the diseased tree example, one may be inter@stedowing how many
trees have the disease. If the sampling unit guare acre and the forest has
N = 1000 acres, them, =N, =100QuSince x is estimated byy, we can

estimate the population total by
ty = Ny (1)
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and the variance of this estimator is
var(ty) — var{ Ng) — N*var(y) = N*(1 — n/N)o* /n.

Confidence Interval for Population Total. A (1-a)100% confidence
interval for the population total, is given by

ty £ tasan 1(5/Vn)y N(N —n).

Sample Size Requirements.

When using a confidence interval to estimateor T, the total, we may

require that our estimate lies withidh units from the true population
parameter. How large a sample size is requirethaothe half-width of the
confidence interval id? The following two formulas give the (approximate)
sample size required for the population mean arad to

Na?22
peon s — aj2 -~
For the mean 02259 + Nd?
and
N2g2,2
For the total Ty: n = N o2t . X
Na?zg -

where z,,, is the standard normal critical value (for ins@n€ o = 0.05,
the z,.,. = 1.96). These two formulas are easily deriveelaigically solving
for nin the confidence interval formulas.

Note that these formulas require that we plug aievah for o> which is
unknown in practice. To overcome this problem, oae use an estimate of
o® from a previous study or a pilot study. Alternatiy one can use a
reasonable range of values for the variable ofésteto get an estimate of
o®.0= Rangé6.

113



Example. Suppose a study is done to estimate the numbastotfrees in a
state forest consisting 6f = 3000 acres. A sample of= 100 one-acre plots
are selected at random and the number of ash peeselected acre are
counted. Suppose the average number of trees pewas found to bg =
5.6 with standard deviatiosi= 3.2. Find a 95% confidence interval for the
total number of ash trees in the state forest.

The estimated total | i5 =N y=3000(56)= 16800 ash trees in the forest. The
95% confidence interval is

1GS00 + 1.96(3.2/+/100) -,lr..-"ll.'}l][I[I[.‘}I][I[I —100) = 16800 4 1840.07.

A Note of Caution The confidence interval formulas given above tfo
mean and total will be approximately valid if tregling distribution of the
sample mean and total are approximately normal.d¥ew the approximate
normality may not hold if the sample size is tooa#imand/or if the
distribution of the variable is strongly skewed. ilastrate the problem,
consider the following illustration. Suppose a &yrvs to be conducted to
estimate the total number of students in Ohio pukthools suffering from
asthma. Let us take each county as a sampling Timen N = 88 for the
eighty eight counties in Ohio.

For the sake of illustration, suppose we know tim@lper of students in each
county suffering from asthma and that the datavsrgin the following
table:

1 Adams 359 15 Columb 1221 29 Greene 1550 43 Lake 2499
2 Allen 1296 16 Coshocton 415 | 30 Guerns 464 44 Lawren 822
3 Ashlan 520 17 Crawford 522 31 Hamilton 8250 | 45 Lickin 1979

4 Ashtab 1274
5 Athens 580

6 Auglaize 558
7 Belmont 638
8 Brown 679

9 Butler 3980
10 Carrol 249
11 Champaign 54¢
12 Clark 1748
13 Clermo 2083
14 Clinton 586

18 Cuyahoga 1457
19 Darke 637

20 Defian 447

21 Delaware 1448
22 Erie 1012

23 Fairfield 1710
24 Fayett 373

25 Frankl 13440
26 Fulton 658

27 Gallia 389

28 Geauga 941

D32 Hancock 888
33 Hardin 448
34 Harris 209
35 Henry 346
36 Highland 601
37 Hockin 264
38 Holmes 380
39 Huron 867
40 Jackson 383
41 Jefferson 778
42 Knox 613

46 Logan 558
47 Lorain 3618
48 Lucas 4632
49 Madison 517
50 Mahoni 2608
51 Marion 824
52 Medina 2250
53 Meigs 264
54 Mercer 602
55 Miami 1192
56 Monroe 185

114




57 Montgo 5459
58 Morgan 178
59 Morrow 413
60 Muskin 1206
61 Noble 181
62 Ottawa 436
63 Pauldi 267
64 Perry 440

65 Pickaw 699
66 Pike 406

67 Portage 1812

68 Preble 572
69 Putnam 435
70 Richla 1473
71 Ross 893

72 Sandus 713
73 Scioto 849
74 Seneca 601
75 Shelby 684
76 Stark 4576
77 Summit 6205
78 Trumbu 2556

79 Tuscararawas
1117

80 Union 572

81 VanWert 289
82 Vinton 179

83 Warren 2404
84 Washington 784
85 Wayne 1279
86 Willia 499

87 Wood 1363
88 Wyando 247

Figure 1 shows the actual distribution of studevith asthma for thé&l = 88

counties and we see a very strongly skewed distoiouThe reason for the
skewness is that most counties are rural with sp@bulations and hence
relatively small numbers of children with asthmau@ties encompassing
urban areas have very large populations and hange humbers of students

with asthma.

Ed

# Frequency

Figure 1. Actual distribution of student totals pmsunty. Note that the

0.6

Midpoeint

1.0 1.4

w104

distributionis very strongly skewed to the right.

To illustrate the sampling distribution of the esdted totak, where
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t,=Ny,
10,000 samples of sizewere obtained and for each sample, the total was
estimated. The histograms show the sampling digtan fort, for sample

sizes ofn = 5,25, and 50.The long vertical line denotes the true totall of
131,260.

Clearly the sampling distribution df/, the estimated total, is not nearly
normal forn = 5. We see a bimodal distribution which resulte do the
presence of lightly populated and heavily populaieanties.

Cochran (1977) gives the following rule of thumlr feopulations with
positive skewness: the normal approximation will leasonable provided

the sample size satisfies
n = 2507,

whereGl is the population skewness,

N
Gy=3" (i — pw)*/(Na?).

i=1
For this particular example, we find
2502 = 357
which is much bigger than the entire number of damgpunits (counties)!
In order to get an idea of how well the 95% confick interval procedure

works for this data, we performed the sampling @Q0,fimes for various
sample sizes and
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computed the percentage of intervals that contdimedrue population total.
If the confidence procedure works correctly, thecpatage of intervals
containing the true population total should be agpnately 95%. The
results are given in the follow table:

Sample Size Percentage
5 70%
10 74%
25 83%
50 89%

The simulation indicates that the true confidersesl is quite a bit lower
than the stated confidence level of 95%. Rer 5, only 70% of the 10,000
intervals contained the true population total.

Thus, this example illustrates that for a strongiy-normal population and
relatively small sample sizes, the sample mean (mmte estimated total)
will not be approximately normal and the confidemderval formulas given
above are not valid.
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Estimating a Population Proportion

Consider a situation where for each sampling ueitrecord a zero or a one
indicating whether or not the sampling unit is gbaticular type or not. A
very common instance of this type of sampling igwaipinion polls - do you
or do you not support candidate X? Suppose youdakavey of plants and
you note whether or not each plant has a particlismase. Interest in such a
case focuses on the proportion of plants that kffaelisease. In this section
we look at how to estimate the population propartio

If we obtain a sample of sizefrom a population of sizdl, and each unit in
the population either has or does not have a péatiattribute of interest
(e.g. disease or no disease), then the numbegroiin the sample that have
the attribute is a random variable having a hypamgric distribution. [N

is considerably larger tham, then the hypergeometric distribution is
approximated by the binomial distribution. We othié details of these two
probability distributions.

The data for experiments such as these looks Yike, ...y, , where

1 if the tth unit has the attribute
i . . . i
(0 1f the tth unit does not have the attribute.

The population proportion is denoted fpgnd is given by
N

|
r - Z Bi-
N =
We can estimatp using the sample proportiof given by
[
p—— Z Yi-
L

Note that in statistics, it is common to denotedb&mator of a parameter
such ap by p(" p*-hat). This goes for other parameters as well.

Using simple random sampling, one can show that

. Nemnpl-p
var(p) = | - | —

This variance can be estimated by replaghy p in the above formula.
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An approximateg1-a)100% confidence interval for the population
proportion is given by

) (N —n)p(l —p)
P TN

This confidence interval is justified by assumihgttthe sample proportion
behaves like a normal random variable which folldwsn the central limit
theorem. The approximation is better when the walae ofp is near 12. If

p is close to zero or one, the distribution pftends to be skewed quite

strongly unless the sample size is very large.

The sample size required to estimatavith confidence levelll-a) with
half-widthd is given by

:,i:_'g."‘“: 1N
|I|I

21— p)+ (N 1)

Note that this formula requires knowimgwhich is what we are trying to
estimate! There are a couple ways around thislgmob(1) Plug inp = 1/2
for pin the formula. This will guarantee a larger thacessary sample size.
(2) Use a guess fqr, perhaps based on a previous study.

Stratified Random Sampling

Data is often expensive and time consuming to cbll8tatistical ideas can
be used to determine efficient sampling plans thidlt provide the same

level of accuracy for estimating parameters witlakken sample sizes. The
simple random sample works just fine, but we cdaroflo better in terms of
efficiency. There are numerous sampling designs dbaa better job than
simple random sampling. In this section we lookerhaps the most popular
alternative to simple random sampling: StratifiethBom Sampling.

The idea is to partition the population irKdifferentstrata Often the units
within a strata will be more homogeneous. For iiedt random sampling,
one simply obtains a simple random sample in e&etas Of course, the
problem arises as to how many observations to akoto each strata.
Another issue is how to define the strata in the place.
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There are three advantages to stratifying:

1. Parameter estimation can be more precise wakfitation.

2. Sometimes stratifying reduces sampling costjquéarly if the strata
are based on geographical considerations.

3. We can obtain separate estimates of parametazach of the strata
which may be of interest in of itself.

Examples.

» Estimate the mean PCB level in a particular speafiesh. We could
stratify the population of fish based on sex arsb a@n the lakes the
fish are living.

» Estimate the proportion of farms in Ohio that useparticular
pesticide. We could stratify on the basis of tize sif the farm (small,
medium, large) and/or on geographical location etc.

These two examples illustrate a couple of pointsuabstratification.
Sometimes the units fall naturally into differetriasum and sometimes they
do not.

Notation. Let N, denote the size of tH8 stratum foii = 1,2, ..... K where
K is the number of strata. Then the overall poputasiae is

K
N=3"N,.
i=1

If we obtain a random of size from thei™ stratum, we can estimate the
mean of thé" stratum,y, by simply averaging the data in tifestratum.
The estimated variance ¢f is

;0 N PRT N
(&5 /mi) (1 — ni (N,

wheres? is the sample variance at tifestratum.
The population mean is given by

K
=3 NiyfN,
i—1

which can be estimated by
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Fie
7. =¥ _ Nii/N.
i=1
with an estimated variance given by

K

) "I.L -
63, = 2 (P m) (L /o),

i=1

The estimated standard errorypf= &(y,) is the square root of this

guantity.
The population total' = N can be estimated using
t,= Ny,
with estimated standard error
SE(t) =N SE(g)

Approximate(1- a) 100% confidence intervals for the population meaah a
total using stratified random sampling are given by

Population Mean: §. + z, 25 F(7.).

and
Population Total: ¢, + 2, o5 E(f,).

Example. A survey was done to estimate the average numwbgamvasive
honeysuckle plants per acre in a forest. The fasegartitioned into 158
acre plots.N,= 86 acres of the forest are new growth ane 72 acres are

old growth. A sample ofn,= 14 acres of new growth and,= 12 acres of
old growth forest were obtained yielding the follog/ data:

New Growth Old Growth
Oy 6742 125 125 155 130 111
2502 105 86 242 101 310 236
27 43 45 59 220 352 142 190
53 21
7, — 63.30 .
8= 32.738 &

37

192
80.7

B
82

[ER
I..T
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The average number of plants per acre using thestvata sampling is
estimated to be:

i = Niiit /N + Naja /N = 86(63.36) /158 + 72(192.83)/158 = 122.36.

The standard error of this estimate is given by

SE(§.) = 1.,-""': NN g (1 — g INY) 4 (NN )28 frg (1 — mg /NG
= /(86/158)2(32.738)2/ 14(1 — 14/86) + (72/158)2(80.782)2 /12(1 — 12/72)
= 10.635.

Thus, with 95% confidence, we estimate that theagaenumber of
honeysuckle per acre in the forest is

122.36 + 2(10.635) = 122.36 + 21.270 plants.
It is interesting to note what would have happeiiede had ignored the
stratification and simply treated this as a simaledom sample of size=
n,+n,= 14+12 = 26. The sample mean of @l 26 acres isy= 123.12
which is very close to the estimated mean founchgushe stratification
formulas. The standard deviation for the 26 measurements $s= 88.100.
The standard error of the mean using the simpléarmnsampling formula is

SE(g) = &/n{l — n/N)=8585.100/26(1 — 26/155) = 15.792.

Thus, using a stratified sampling plan led to a lmsmmaller standard error of
the mean (10.635 compared to 15.792) than if wejlstdreated the data as
a simple random sample. That is, the stratifiedgiheleads to a much more
precise estimator of the mean. In addition, thatification design allows us
to obtain separate estimates of honeysuckle aboedan new and old

growth parts of the forest.

Post-Stratification

Sometimes the stratum to which a unit belongs lenawn until after the
data is collected. For example, values such asoagex which could be
used to form stratum, but these values may notrmevk until individual
units are sampled. The idea of post-stratificatsoto take a simple random
sample first and then stratify the observatione sttata after. Once this is
done, the data can be treated as if it were afsdatandom sample. One
difference however is that in a post-stratificats®iting, the sample sizes at
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each stratum are not fixed ahead of time but sstead random quantities.
This will cause a slight increase in the variapibf the estimated mean (or
total).

Allocation in Stratified Random Sampling

If a stratified sample of sizeis to be obtained, the question arises as to how
to allocate the sample to the different strataldoiding the allocation, three
factors need to be considered:

1. Total number of elements in each stratum.
2. Variability in each strata, and
3. The cost of obtaining an observation from edcktam.

Intuitively, we would expect to allocate larger gdensizes to larger stratum
and/or stratum with high variability. Surveys affeen restricted by cost, so
the cost may need to be considered. In some sitstthe cost of sampling

units at different strata could vary for variouasens (distance, terrain, etc.).
The optimal allocation of the total sampieto thei™ stratum is to chose

n proportional to

1'.... 'T.'

mny o
v

where ¢ is the cost for sampling a single unit from tH stratum.

Therefore, the stratum will be allocated a larger sample sizasifrelative
size or variance is big or its cost is low. If #ests are the same per stratum,
then the optimal allocation is given by

n; o Ny,
which is known afleyman Allocation

A simple allocation formula is to ugeroportional allocationwhere the
sample size allocated to each stratum is propatiom the size of the
stratum. This will be nearly optimal if the costdavariance at each stratum
are nearly equal.
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Stratification for Estimating Proportions.

A population proportion can be thought of as a pagan mean where the
variable of interest takes only the values zer@me. Stratification can be
used to estimate a proportion, just as it can leel i3 estimate a mean. The
formula for the stratified estimate of a populatpoportion is given by

1 &

fle =—% N,
y 2N

and the estimated variance of this estimator ismylvy

| LI .
1111'|j,u,j|=FZ.‘-;[.‘-, (L — )/ (e — 1.
T

Systematic Sampling.

Another sampling design that is often easy to immelet is a systematic
sample. The idea is to randomly choose a unit flloenfirstk elements of
the frame and then sample eve%//unit thereafter. This is calledame-in-k
systematic samplé\ systematic sample is typically spread more gvewer
the population of interest. This can be benefiomlsome situations. In
addition, a systematic sample may yield more peeestimators when the
correlation between pairs of observations in thstespatic sample is
negative. However, if this correlation is posititken the simple random
sample will be more precise. We can use the sammeufas for estimating
the population mean and total as were used fomplsirandom sample.
These estimators will be approximately unbiasedtl@ population mean
and variance. If the order of the units in the papon are assumed to be
arranged in a random order, then the variance efsdtmple mean from a
systematic sample is the same of the variance &@mple random sample
on average. In this case, the variancg dfom a systematic sample can be
estimated using the same formula as for a simpldam sample:
(N-n)s® (Nn).

An alternative to estimating the variability is ¢onsider the order of the
observations in the systematic sampygly, .....y, and then note that for

consecutive neighboring pointg and y,_,, we haveEl(y, -y, )| = 20°
assuming that neighboring points are independeamFhis, it follows that

125



n
a - ; O 1%
s =053 (g —wia ) /(n 1)
1=2

can be used to estimate the variance and therdferstandard error of the
meany can be estimated using

SE(7) = s,/ /1.

If the population has some periodic variation, thiem systematic sampling
approach may lead to poor estimates. Suppose yauwdeddo use a
systematic sample to monitor river water and y@nmn obtaining samples
every seventh day (a 1-in-7 systematic sample)nTthes sampling plan
reduces to taking a sample of water on the sameoflaiile week for a
number of weeks. If a plant upstream dischargesen@sa particular day of
the week, then the systematic sample may veryylik@bduce a poor
estimate of a population mean.

Systematic sampling can be used to estimate pioperas well as means
and totals.

Systematic sampling can be used in conjunction wsitiatified random
sampling. The idea is to stratify the populati@sdéd on some criterion and
then obtain a systematic sample within each stratum

Other Design Strategies

There are many different sampling designs usedaetige and the choice
will often be dictated by the type of survey thatrequired. We have
discussed simple random sampling, stratified randsampling and
systematic sampling. Now we briefly discuss a fetheo well-known

sampling methodologies.

Cluster Sampling.

The situation for cluster sampling is that the dapan consists of groups of
units that are close in some sense (clusters).elgesups are known as
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primary units The idea of cluster sampling is to obtain aptarandom
sample of primary units and then to sanmgteryunit within the cluster.

For example, suppose a survey of schools in the &ao be conducted to
study the prevalence of lead paint. One could olaaimple random sample
of schools throughout the state. But this could leahigh costs due to a lot
of travel. Instead, one could treat school disrias clusters and obtain a
simple random sample of school districts. Once rarestigator is in a
particular school district, she could sample esatyool in the district.

A rule of thumb for determining appropriate clustés that the number of
elements in a cluster should be small (e.g. schzaiglistrict) relative to the
population size and the number of clusters shoalthlye. Note that one of
the difficulties in sampling is obtaining a framEluster sampling often
makes this task much easier since it if often gasgompile a list of the
primary sampling units (e.g. school districts).

Cluster sampling is often less efficient than senphndom sampling
because units within a cluster often tend to balaimThus, if we sample
every unit within a cluster, we are in a sense iobitg redundant

information. However, if the cost of sampling artiencluster is not too

high, then cluster sampling becomes appealinghferseke of convenience.
Note that we can increase the efficiency of clusempling by increasing
the variability within clusters. That is, when d#og on how to form

clusters, say over a spatial region, one could shadusters that are long
and thin as opposed to square or circular so thatetwill be more

variability within each cluster.

Estimation and standard error formulas for clustmpling can be found in
most textbooks on sampling (e.g. Scheaffer, Menalgrdnd Ott 1996).

Notation.
N = The number of clusters
n = Number of clusters selected in a simple random sample
m; = Number of elements in cluster i
N
M = 3 m; = Total number of elements in the population

i=1
y; = The total of all observations in the ith cluster
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The population meap is estimated by

n
§ = Plio1 Ui
' E.. | My

This estimator is a special case g&to estimatomwhich we shall introduce
a bit later. The estimated varianceyofs given by

var(g) = [(N — n)/(Nnl*) s,
where
T
-*E=Z':-“f-' _f?n'.'.',::lzl,-".[.'.' 1.
i—1

and
M= M/N.

the average size of a cluster for the populatiarteNhat often in practidd
and hencev are unknown in which cage can be estimated by

1

L
= — Z M.

nig

Estimating the Population Total in Cluster Sampling An estimate of the
population total in cluster sampling can be obtdimemuch the same way it
was obtained in simple random sampling:

t, = M.
The estimated variance af is simply M var(7),  What is wrong with using

this estimator of the population total? The problerthat it requires that we
know M which is often unknown.

Alternatively, if we do not know, we could estimate the population total
using

where

i=1
Is the average of the cluster totals for the samplesters. The estimated
variance ofNy, is
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var(Ng) = N(N — n)sd /n.
where
n
hf = Z 8y — i ]2_..-"|: n— 1.
=1

Ny, iS an unbiased estimator of the population tdtat,because it does not
use the information on the cluster sizes (e.g.nhi€), the variance ofi\y,
tends to be bigger than the variance of

Example. Roberts et al (2004) used a cluster sampling aghréo estimate

the number of additional deaths in Iraq that resuttue to the Irag war that
started in 2003. From this article, it was widedported that the number of
Iraqi's killed from the war (so far) is 100,000.€lihestimate of Iragi deaths
due to the war was 98,000 (not including Fallujaiclwhhad a very high

number of deaths). A 95% confidence interval fas tfotal was given as

(8000, 194000). 33 clusters were sampled based on Gowtasoand 30

households were interviewed in each cluster. Thel@&ters were sampled
using a systematic sampling approach. Addition&ditdecan be found in the
article.

Question: How is a cluster sample different frostratified sample?

Multistage Sampling

Multistage sampling is similar to cluster sampli@e idea is to determine a
set of clusters (i.e. primary units). The firstgeais to obtain a simple
random sample of these clusters. The second stage obtain a simple
random sample of units from each of the selectedtets. In cluster
sampling, one would sample every unit within thasttr. However, for
multistage sampling, only a sample of units witthie selected clusters is
obtained. In the school lead sampling, if the nundfeschools in districts is
large, then multistage sampling may be preferredr amluster sampling.
Multistage sampling differs from stratified samgjim that only a sample of
clusters are obtained. In stratified sampling, ywhuster would be sampled.

Of course, multistage sampling can be generaliaeahyy number of stages.

Suppose you want to survey lakes in the countrg fliist stage may be to
randomly select a sample of states. In the sectagksselect a sample of
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counties from each of the selected states. Finabynple lakes in each
county.

Composite sampling- mixing samples that were obtained near each tbhe
save on the cost of analyzing the sample. For eleropnsider the problem
of testing blood to determine the proportion of eowith syphilis. Initially,
take one drop from each blood sample, mix thespsjrand test the mixture
for syphilis. If the test is negative, then syhis not present in any of the
blood samples. However, if the test is positiventithe individual samples
need to be tested. On average, the expected nuwhtests using composite
sampling is much less than the number of samplesepit.

Ranked set sampling- used to save time and money for analyzing sanple
The following example will help illustrate the pexsture.

Ranked set sampling exampleThe goal is to estimate the average amount
of spray deposit on apple tree leaves. The sampiiniig are the leaves of
the tree. Accurately computing the deposit densiyn the spray is time
consuming: it requires an image analysis of thé teabtain a total pixel
grey-scale value which is then divided by the kErafa. Suppose a sample of
sizen = 5 is to be obtained. The basic idea of rankedsastpling is to
obtain a random sample of five leaves astk them from highest to lowest
spray deposit density. Pick the leaf with the hagtspray concentration and
accurately measure this concentration. Rankedaseplgng requires that the
observations can be quickly ranked. In this exampignking the
observations can be done if leaves are sprayed avfthorescent dye and
examining them visually under ultraviolet light. Merandomly pick five
more leaves, rank them and then measure the sprasityl on thesecond
highest leaf. Again, randomly pick five leaves, kdhem and perform the
measurement on the third highest leaf. Repeattthget the fourth and
fifth measurements. We can think of the data infdtlewing illustration -
each row corresponds to five sampled leaves. Irfiteerow, the largest
value is denoted by, and in the second row, the second largest value is

denoted by, ; and so on.
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An unbiased estimator of the mean is given by dm&ed set mean
estimator:

It can be shown that the ranked set sample meamie efficient than the

simple random sample mean, i.e. the variance: é$ less than the variance
of the sample mean from an ordinary simple randampe. In fact, the
increased efficiency of ranked set sampling cangbie substantial. Of
course if errors are likely when ranking the obag&ons in each row above,
then the efficiency of the ranked set sampling ddtrease.

Ratio Estimation.

It is quite common that we will obtain auxiliaryfammation on the units in

our sample. In such cases, it makes good sensettha information in this

auxiliary information to improve the estimates loé tparameters of interest,
particularly if the auxiliary information providesformation on the variable

of interest.

Supposex is the variable of interest and for each unit, ¢hex another
(auxiliary) variableu available. Ifu is correlated wittx, then measurements
on u provide information orx. Typically in practice, measurements on the
variableu will be easier and/or less expensive to obtaintard we can use
this information to get a more precise estimatartfe mean or total of.
For instance, suppose we want to estimate the maeaiber of European
corn bore egg masses on corn stalks. It is timeswgomg to inspect each
and every leaf of the plant for corn borers. Wel@dalo this on a sample of
plants. However, it is relatively easy to count thenber of leaves on each
given stalk of corn. It seems plausible that thenber of egg masses on a
plant will be correlated with the number of leawvesthe plant.
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A common use of ratio estimation is in situationsewe u is an earlier

measurement taken on the population andrepresents the current
measurement. In these situations, we can use iatmmfrom the previous
measurements to help in the estimation of the numean or total.

Suppose we obtain a sample of paitsx,), ..... , (u,,x,). We can compute
the means of the two variablegsandu and form their ratio:

T =

Letting x, and x, denote the population meansxandu respectively, then
we would expect that

Ha

in which case

Mo 52 Tl
Using this relationship, we can define the rationestor of meary, as
Tratio = T,

and ifN is the total population size, then the ratio estomaf the totalr is

te = 7N phy.

What is the intuition behind the ratio estimatof?tHe estimated ratio
remains fairly constant regardless of the samptainéd, then there will be
little variability in the estimated ratio and henbtle variability in the
estimated mean using the ratio estimator for themger total).

Another way of thinking of the ratio estimator is ®llows: suppose one
obtains a sample and estimatesaising x and for this particular sample,

underestimates the true megn Then the corresponding mean wfwill
also tend to underestimate, for this sample ifx and u are positively
correlated. In other wordgy, /awill be greater than one. The ratio estimator
of u is
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Tratio = MHa = TL72).
From this relationship, we see that the ratio emttim takes the usual
estimatorx and scales it upwards by a factor qf /u  which will help
correct the under-estimation ®f

There is a problem with the ratio estimator: ibiased. In other words, the
ratio estimator ofy, does not come out tg, on average. One can show

that
% atip) = pe — covir, ).
However, the variability of the ratio estimatoresfttends to be smaller than

the variability of the usual estimator of indicating that it may still be
preferable.

An estimate of the variance of the ratio estimaQr is given by the
following formula:

T
Var(Tpapio) = (1 — /NS (m —rw)*/[n(n — 1)]. (2]
iml

By the central limit theorem applied to the ratstimator, x_.. follows an

approximate normal distribution for large sampleesi In order to guarantee
a good approximation, a rule of thumb in practeéo haven > 30 and the
coefficient of variatiow, / £, <010. If the coefficient of variation is large,

then the variability of ratio estimator tends toléege as well.

An approximate confidence interval for the popwalatmean using the ratio
estimator is

Tratio + Za/28€(Tratio )

where &¢(F,44,) is the square-root of the estimated variance of the ratio estimator
in (2.

An approximate confidence interval for the popwlatiotal using the ratio
estimator is given by

be £ ZapBe(ly),
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where

gelt) =_EHHJEJHUJ

When estimating the mean or total of a populatidmenv an auxiliary
variable is available, one needs to decide betwserg the usual estimator
x or the ratio estimator. If the correlation betweeandu is substantial,
then it seems that using the ratio estimator shbalgdreferred. A rough rule
of thumb in this regard is to use the ratio estonavthen the correlation
betweenx and u exceeds 0.5. There is a theoretical justificafimnthis
given in Cochran (1977, page 157) based on assuthmgoefficient of
variation forx andu are approximately equal.

Example. A study of acid rain was undertaken by examinsagnples of
water in 32 lakes in 1977. In 1976, the pH was messin the population of
all N = 68 lakes which gave a mean valuef= 5.715 in 1976. Figure 5
shows a scatterplot of the pH values from the sangbin = 32 lakes in
1977. The goal is to estimate the mean pH lexglfor all N = 68 lakes for

1977. The data for the= 32 lakes are given in the following table:

1976 1977 1976 1977
4.32 4.23 5.97 6.02
4.97 4.74 4.88 4.72
4.58 4.55 6.23 6.34
4.72 4.81 65.15 £.23
4.53 4.70 4.82 4.77
4.95 5.35 £5.42 4.82
£.31 5.14 £.31 5.77
5.42 5.15 5.26 5.03
4.87 4.76 £5.99 6.10
5.87 5.95 4.88 4.99
65.27 6.28 4.60 4.88
6.67 6.44 4.85 4.65
.38 5.3z .97 5.82
£.41 5.54 6.05 5.97
.60 6.10

4.93 4.54

5.60 5.69

6.72 6.59
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The sample means for the= 32 lakes are

T=53007 and @ = 5.4150,

which gives an estimated ratio of

T 53997
=2 = = 0.9970.
T T samo
The ratio estimator of: , the average pH in the 68 lakes is
Fratio = THa = (0.9070)(5.715) = 5.6079,

which is higher than the simple estimate £ 5.3997.Therefore, the ratio
estimate takes the usual estimate of 5.3997 andssitaup by a factor of
4, 1t=5.715=5.4159 = 1.0552.The sample correlation between pH in 1976

and 1977 for the 32 lakes is 0.883 which indicahes the ratio estimator
will be more efficient than the usual simple randsample estimator of the
mean. The estimated coefficient of variation for7@9and 1977 are
respectively 0.1234 and 0.1244. Although the cokffit of variation for

1977 exceeds our rule of thumb value of 0.10, &sdaot exceed it by much.

The estimated variance for the ratio estimatorlmoomputed as

32
VAL (Tpapin) = (1-0/N )3 (2 — 0.0970u;)? /[32(31)] = (1-32/68)(3.2473)/[32(31)] = 0.0017.

i=1

The standard error ofx_,, is obtained by taking the square root of this

quantity which give& (x ) = /0.0017=00412 A 95% confidence interval
for u, is

56970 £ 1.96(0.0412) = 5.6079 + 0.0805.

Note that if we had just used the sample meantimate the population
mean (obtainingk = 5.3997), the associated standard error would be

se(z) = (s//m)y/L — n/N = (0.6716//32)/1 - 32/68 = 0.0864
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pH in Norwegian Lakes for 18976 and 1877

] T T T T T

X = pH in 1977

U = pH in 1976

Figure 5: Seatterplot of pH in 1077 versus 1976 at 32 Norwegian lakes. These 32
lakes are a subset of all 68 lakes.

which is more than twice the standard error of the#o estimator. This
indicates that the ratio estimator iIs a more affiti estimator of the
population mean.

There exist sample size formulas for estimating meeand totals using a
ratio estimator which can be found in most textl®ok sampling. Note that
if ratio estimation is more efficient than the ussemple random sample
estimate, then smaller sample sizes will be reduioe the same level of
precision.

Regression Estimation

Note that the line in Figure 5 appears to go thihotng origin which stands
to reason if the relationship= ru is approximately valid. There exist other
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examples where an auxiliary variable is availabtel dhe relationship
betweenx andu is linear, but the line does not necessarily gough the
origin. In these situations, it makes sense tazetithe information in the
auxiliary variable using a simple linear regressieiation betweex andu:

=y + Fin 4k,

where g, and g, are the intercept and slope of the line and a random

error to account for the fact that the sample gomtl not all lie exactly on
aline.

Let B denote the usual least-squares estimator of thges|Then the
estimated regression line is given by

=T+ dfuw— ).
Additionally, the least-squares regression lineaglsv passes through the
mean(d,x). This suggest the following least-square regoessitimator of
the mean ok, denotediL :
fl, = F+ Bylp, — @)
Thus, the regression estimator takes the usuaha&str x of the mean and
adjusts it by addingg, (1, ).

» Typically the ratio estimator is preferred over tegression estimator
for smaller sample sizes.

* Ratio and regression estimation can be used irunotipn with other
types of sampling such as stratified sampling.

Double Sampling
Double sampling (also known as 2-phase sampling$ingilar to ratio

estimation in that it uses information from an #ary variable. For ratio
estimation, it was assumed that the population meanvas known for the

auxiliary variable, but this may not always be thse.

The basic idea of double sampling is to first takdarge preliminary sample
and measure the auxiliary variable. It is assuthatthe auxiliary variable
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will be easy and/or inexpensive to measure anditiall be correlated with
the variable of interest. Then another samples(o& sub-sample of the first
sample) is obtained where the variable interest is measured.

Some examples of easy-to-measure auxiliary vasadle

» Examine aerial photographs of sampling units targegjh counts of
trees, animals etc.

* Published data from past surveys.

» A guick computer search of files using a keywonddrample.

In order to perform a double sampling, one firstagls a preliminary
sample of sizen’ say and measures the variahleFrom this preliminary
sample, we can get an estimateupfusing

i, = Z w; /n'.
i1

Then one obtains the usual sample of sizperhaps as a sub-sample of the
preliminary sampled units. From this sample, we @ampute the ratio as in
a ratio sample:

r=

i
Then, the population total forcan be estimated using

by = T,

The variance for the estimated total using doukden@ing is more

complicated than the variance of the ratio estimbi®cause we have an
extra source of variability with double samplinghamely the variability

associated with the preliminary sample. The ed#@thavariance of the
double sampling total estimator is given by

Vin' — n)
far(t,) = N[N —n')e® fn' 4+ —— 7%
! nn'

where
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Notice that ifn’ = N, that is if the preliminary sample is of the eatir
population (i.e. a census), then the first termthrs variance formula
becomes zero and we end up with the same formutheagtio estimator
variance.

Unequal Probability Sampling

The sampling procedures discussed up to this ponalve simple random
sampling of sampling units in which case each ba# the same chance of
being selected for the sample. Even with samplegghs more complicated
than simple random sampling, such as stratifiedoansampling, a simple
random sample was obtained in each stratum. In rsduogtions, a simple
random sample is either not possible or not prbfera

In line-interceptsampling for example, a line is more likely to nuEpt
larger units than smaller units. If we divide aeaainto plots of sampling
units, the plots may not all have the same sizéhdse cases, the probability
of the unit to be selected into the sample willelepon the size of the unit.
This is sometimes known @asobability proportional to sizestimation.

Let p, denote the probability that thf unit will be selected.

Hansen-Hurwitz Estimator: Suppose sampling is done with replacement.
Recall that when using simple random sampling, gbpulation total is
estimated by, =Ny. We can rewrite this as

1.2 R
Ly =—=" w/(1/N].
n i

If we are sampling with replacement when each liag# the same chance of
being selected, then the probability that a ungeakected at any given draw
is U/N. For the Hansen-Hurwitz estimator, we simply repléhe IN by p,

for thei™ unit:

fa = — 3 4i/pi (Hansen-Hurwitz estimation of total)
n :
i1

Horvitz-Thompson Estimator: Sampling with replacement is not done
often in
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practice as in the case of the Hansen-Hurwitz @stm With the Horvitz-
Thompson estimator, the sampling can be done eithdr or without
replacement. We shall consider the case when thelsa) is done without
replacement. Lelr denote the probability th&' sampling unit is selected in

the sample. (Note that if all units have the sah@nce of being selected and
we sample without replacement, ther= n/N: Can you explain why?)

The estimator of the population

total is given by

I
tur = ¥ yi/m (Horvitz-Thompson Estimator).
i1

The population mean can be estimated using

figr = tur/N.
assuming tha units selected are all distinct (this will not nssarily be the
case when sampling with replacement). The variafwcenula for the
Horvitz-Thompson estimator is quite complicated analves probabilities
of the form z; which denotes the probability that uniteandj are both
selected. Recent research into simpler variancauias that do not require
knowing the 7z, has been published, see for example Berger (2004).

sampling is done proportional to size and sizenifswary, then ther, will
vary in value as well.

Detectability

In some sampling cases, the elements may be difficudetect within the

sampling units. This may be the case in certairlifi@l populations (e.qg.

fish, birds, etc.). If one is obtaining a simplendam sample from a
population ofN units, then whether or not an animal in the unidesected

may not be certain, but instead a probability isoamted with the chance
the animal is detected. A non-animal example cootdur when soil

samples are assessed for a particular contams@mne of the material may
be missed due to sparsity of the contaminant.

Definition. The probability that an object in a selected usibbserved is
termed itdetectability
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For the sake of discussion, we shall refer to thjeats as “animals.” The
following is some notation:

# = +* of animals observed

T total ## of animals

p = probability an animal is observed.

If we assume independence between observations andonstant
detectability probability throughout a region, then

¥~ Binomial(7, p).

that is,Y , the number of animals observed follows a binordiatribution
on r trials and success probabilipy Therefore, the expected valueYok

E[Y]=7p,

which indicates that we can estimate the total remalh animals by solving
for r and using an estimate for the mean:

T=u/p.

The variance of the binomial random varialls 7 p(1- p) and thus

TPl — p) Tl —p)

VAT ) =

P p

which can be estimated by substitutihdor 7 to get

gil—p

P
Notice that if the probabilityp of detection is small, then this variance
becomes large. If the area of the region of irstei®A, then we can define
the animaldensityas

VAT(T ) =

= _ 1,

the number of animals per unit area. An estimatéhi® density then is
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i
==,
pA

which has an estimated variance of

var( ) = i_)[.l—q"”].
A2 pt
These formulas require that we know the value biit this is typically not
the case in practice.

The question arises as to how to estimpteMethods such as double
sampling, capture-recapture or line transects eansed to estimatg@ One
way to estimate is to selech sampling units and let denote the number
of animals detected in th& unit using the standard sampling technique.
Then do an intensive search of each of these sagnpinits and lety,

denote the actual number of animals atithanit. Then an estimate gfis
obtained by computing

The variance of this estimator can be estimatedgusieas from ratio
estimation.

If p has to be estimated, then the previous estimateegbopulation totar
can now be given as

LU
¥ - I|IJ

Since we now have the randopnin the denominator instead of a fixpd
the variance of the estimated total increases byeatma term. An
approximate formula for the variance of this estedatotal can be derived
using a Taylor series approximation to the ratio

1 ) T

var(7) = .-—lj—f] + —var(ji).
P P

In the formulas above, we have yatlenote the number of animals observed
from our sample. The value gfobtained depends on the sampling design
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used. For instance, if a simple random sample wad,uthen the estimate of
the total was found to bsly assuming all animals could be detecteq i$

the probability of detection, then the estimat¢hef total becomes

T =Nig/p.

We can replace by p in this formula wherp needs to be estimated. The

variance formula approximations become quite corapdd in this case (e.g.
see Thompson 1992).

Line Transect Method

In this section we give a brief introduction to soof the basic ideas of line
transect sampling. The basic idea of the line #enmethod of sampling is
for the observer to move along a selected lindénarea of interest and note
the location of animals (or plants) along the lara the distance from the
line. The goal of the line transect method is tinese the animal density

= (# of animal/unit area)Then the total number of animals can be found by
computing

where A is the area of the region of interest. The obsewiirobtain a
random sample of line transects. Lgt denote the number of animals

detected along thi€ transect.

The Narrow Strip Method: Choose a strip of lengthand letw, denote the

distance to the left and right of the line where tbserver will observe the
animals -w, is called the half-width. A simple estimate of thensity along

the strip is

Number of animals in the strip ]
Area of the strip Pt

The narrow strip method assumes that animals amgahdhe strip are just
as likely to be observed as anywhere else in thp. ddowever, a more
realistic scenario is that the detectability desesawith the distance from the
transect.
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Instead of using the narrow strip method then, daga can be used to
estimate a detectability function where the proligiof detection drops off
with the distance from the line transect. A coypdeular parametric choices
for the detectability functions are given by theemential function and the
half-normal function:

glr) = e " Exponential Funetion

glx) = e ™ /U Half-Normal Funetion.

wherew is a parameter typically estimated using maximumalilhood andx
is the distance from the line. Instead of specgy@nparametric form for the
detection function (e.g. exponential and half-ndymanonparametric
detection functions can be estimated usiemelmethods.

For line transect sampling, more than one transedbtained. One can
obtain a simple random sample of transects. Thisuslly accomplished by
drawing a line along one edge of the region and #edectingn points at
random along this line. Then the transects arpgmelicular lines extending
from this baseline into the region at th@oints. Note that biases can occur
for transects that occur near the boundary of #ggon (e.g. there may be
few animals along the boundary - there are waydeafing with this that we
will not go into here). If the region has an irregushape, then the lengths
L. of then transects will have varying lengths and therefbeslengths are

random variables.

Instead of taking a simple random sample of trasseme could instead
obtain a systematic sample of transects. This kelp guarantee a more
even coverage of the region.

Also, transect lines can also be selected with giwity proportional to the
length of the transect. The probability proporticimalength selection can be
accomplished by selected points at random from the entire two-
dimensional region and then select transects basegerpendicular lines
that go through these selected points from thelipase

The Data Quality Objectives Process

The collection of data can be time consuming amkesive. Therefore, it is
very important to plan matters very carefully befandertaking a survey or
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experiment. If too small a sample size is useeh there may not be enough
information to make the resulting statistical asayuseful. For instance,
confidence intervals may be too wide to be of amg or a statistical test
may Yyield insignificant results even if there igeal effect. On the other

hand, one does not want to unnecessarily expendmioch money and

resources obtaining more data than what is negessavrder to make a

decision.

The steps of the DPO can be summarized as follawing

1. State the problem: describe the problem, reviwior work, and
understand important factors.

2. ldentify the decision: what questions need tam&vered?

3. Identify the inputs to the decision: determineatvdata is needed to
answer questions.

4. Define the boundaries of the study: time periadd spatial areas to
which the decisions will apply. Determine when avitere data is to
be gathered.

5. Develop a decision rule: define the parametesx{spterest, specify
action limits,

6. Specify tolerable limits on decision errors:tloften involves issues
of type | and type Il probabilities in hypothessting.

7. Optimize the design for obtaining data: consiefariety of designs
and attempt to determine which design will be thesthresource-
efficient.

This process may very well end up being an iteeatikocess. Not only will
later steps depend on the earlier steps but tlee Eeps may make it
necessary to rethink earlier steps as the proocsdses. For instance, one
may initially set unrealistic error bounds (typarid/or IlI) and then come to
realize that these constraints would make the prgje way over budget.
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CHAPTER - 12
CONTROL CHARTS

Introduction

What is a Control Chart

Control Chart is a chart on which the values of tuality characteristic
being controlled are plotted in sequence. Thetdwrsists of a central line
(corresponding to the desired average level) aral dtatistical limit lines
called Upper Control Limit (UCL) and Lower Contrbimit (LCL) which
indicate the limits oNatural variation (not the specified variation) for the
sample “statistic' (like average, range, % defecitmo. of defective items per
sample, no. of defects per item etc.) being plotted

The control limits are supposed to strike a baldme®veen two kinds of
errors, viz., (1) looking for trouble that does raist and (2) failing to look
for trouble that does exit. Neither of these kinflgrrors should be unduly
large, yet neither should be reduced to such ame#ttat it unduly increases
the other.

Sample constitutingational subgroup are taken at regular intervals of
production and suitable “statistic' computed fitthe sample measurements
are plotted on the control chart. Suitable techinection is called for
whenever the statistic violates the control linmitssomeabnormal pattern is
developed in the chart.

Histogram has certain limitations. Even if thegoral data were collected in
sequence of time and the identification of timetsage was kept for each
observation, that information is totally lost wheve make frequency
distribution and histogram. If there has been adgal drift or occasional
changes in the process level during the periodatd dollection, histogram
does not reveal these aspects which might be wifalts for necessary
corrective action. In such situations, we mightheimes wrongly conclude
that the process is under statistical control. rétoee, it is necessary that we
examine the behaviour of the process over sequehdame wherever
feasible. This is done through RUN CHARTS.
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Run Chart

Run chart is a simple chart where the quality ottarsstic is plotted in

sequence of time for consecutive items producetle dhart contains the
specification limits and also the mid-specificatibime where the process
average is supposed to be centered.

Advantages of a Run Chart

» Very easy and simple to plot.

» Needs little statistical training for interpretitige chart.

» Provides good feedback on approximate average &wklvariability
for prompt corrective action.

Disadvantages of a Run Chart

» One has to wait for a long time to detect a sniadinge in average or
variability level.

» Objective and precise decision criteria as to wioetlake action and
when not to take action are not provided. Thesadliantages are
taken care of through CONTROL CHARTS.

Rational Subgroup

Product streams can usually be divided into homeges groups (or lots)
with reference to time or other characteristicsueimg that products in the
group have been made under conditions of statistoatrol. Rational
subgroup is a sample which represents a homogermgoup. Assignable
causes, if they exist, cause variation betweenpggoulhe objective of the
control chart technique is to check whether thaatian between groups
measured by subgroup difference is in conformitthwvtine variation within
subgroup. Appropriate statistic from these rati@udgroups are plotted on
the control chart. Process standards are evolVied axcluding those
subgroups where assignable causes are suspetiagetoperated.
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Control limits

The control limits are usually placed at Meas standard deviation
standard deviation of the statistic. = The stathddaviation represents the
variability within a rational subgroup.

Procedure for installing and operating control chats

1. Decide on the characteristic (measurable abat#) to be controlled.

2. Define the groups or lots which will provideioaial subgroups.

3. Decide subgroup size. It really depends onatheunt of shift to be
detected quickly in the process level. For meddaraharacteristic,
for shifts of as much ago, sample size 4 or 5 is usually used
whereas for small shifts, say, sample sizes 15-20 are suitable.

4. To develop process standards obtain data f@5284bgroups.
Through appropriate statistical procedure, "homsgethe data,
evolve process standard and calculate the staoi@ardtion of the
sample statistic to be plotted on the chart.

5. Obtain the control limits as Average standard deviation of the
sample statistic.

6. Draw the central line and the control limitsabgraph, continue to
obtain rational subgroup measurements and platah®le statistic
on the chart.

7. As soon as a point violates the limits or ther@bnormal pattern' of
points, infer that some assignable cause of vandtas disturbed the
process. Accordingly investigate and take corveddiction.

Types of Control Charts

Type of control charts depends on the nature olitgjuanaracteristic being
controlled. The Charts are broadly classified #alAute and Variable.
Control charts for attributes

These charts are used when we are interestedninottimg percentage or

proportion of occurrences of some event. The dlpexample is when
guality data are generated in the form of attritdata like "good' and "bad’
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and the quality characteristic of concern is thepprtion defective' (p) or
number of defectives in a sample of constant size.

In order that we are able to calculate the stahdaror of the statistic
“"number of defectives in a sample of constant'siae must know the long
term pattern of variation (i.e. probability disuiion) of the concerned
statistic (a random variable) under stable proosmsditions producing
proportion of defective.

The long run averaggu), number of defectives and the standard deviation
(a)of the number of defectives in a sample of sizalhb& given by

{4 =np

g =,np (1- pi

If the characteristic chosen is p i.e. the sampd@@tion defective, then the
mean and s.d. are given by

H=P

o= 1/pil— pi/n

Where n is the sample size.

These results help us in calculating the controlité for the relevant
characteristics

np Chart

When the subgroup size (n) for inspection remaipsstant in each
subgroup, we use np chart to examine the statemia with respect to
number of defectives in each subgroup

The formula for the control limits are

150



when np is the homogenised average number of defectivesgmeple of
size n.

C-Chart

This chart is used for those characteristics windicate only the number of
occurrences of some rare events like occurrencdetdcts, breakdown,
accidents, absenteeism, etc. during fixed timeruals or length, area and
volume space. The concerned random variable fellasvat is known as
POISSON DISTRIBUTION.

In control chart operations the variable denotingaf occurrence is hamed
as c. The long run average and standard deviategiven by

po=c
o = ¢

This result helps us in obtaining the control tenifor the desired
characteristic.

X - R Control charts

In order to ensure that the production of defestiyrot conforming to
specification) is minimised, we have to exercisatam over average level
as well as variability. For controlling the aveeatgvel, the appropriate
control chart isX chart where the subgroup averagéare plotted in time
sequence. Similarly, for controlling the varialylithe chart to be used is
the Range or R-chart where the statistic plottedilae sample ranges (R). A
sampleX - R-chart is given in the next page.
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The following data relate t€O content in air in a particular locality

Table : Data on CO content

Sample No. 1 2 3 X R
1 2.12 2.13 2.12 2.123 0.0
2 2.13 2.10 2.13 2.120 0.03
3 2.15 2.13 2.13 2.137 0.0
4 2.10 2.12 2.14 2.120 0.04
5 2.11 2.14 2.16 2.137 0.0b
6 2.07 2.13 2.15 2.117 0.08
7 2.12 2.12 2.14 2.127 0.0R
8 2.10 2.12 2.15 2.123 0.0b
9 2.15 2.13 2.11 2.130 0.04
10 2.11 2.12 2.12 2.117 0.01

Assuming that the measurable characteristic follsvemal distribution, the
formulae for the control limits in th& and R charts are given as follows:

Table : Formulae for Control Limits

Chart for Central Line Upper Control Lower Control
Limit
Average X X X+A R X-A R
Range, R R D, R
Where

X = Average of the sample average .

R = Homogenised average range
For routine operation of control chaiX, is to be replaced by target value

A2, D3, D4 are constants depending on a subgrag (Hefer TABLE-A).
For the given data, we have sub group size
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n = 3

A2 = 1.023
D3 = 0

D4 = 2574

Homogenisation of Ranges

First we shall evaluate the process standardsdog® We shall detect the
abnormally high ranges which are likely to havesem due to some
assignable cause of variation. If no assignableseahas disturbed the
process, the individual ‘range' values will all faithin the control limits for
range. If any range value violates the limitssitan indication that it does
not belong to the set of remaining range valuassutch a case, we eliminate
that ‘range' and reexamine the control aspect tiferremaining ‘ranges'.
This procedure known as "Homogenisation of range<ontinued till we
are left with a set of ranges which falls withirethatest revised control
limits. The average of the ranges remaining atvathin the control limits
is called the "“standard (homogenised) averagesldry

One note of caution. If in the process of homosg@in more than 20 % of
points are to be discarded, do not use the dataevolving process
standards for future control because such a swuatndicates that the
process is very much disturbed and so it should b@tconsidered for
evolving the standards.

For our data

R = 0.35/10 = 0.035
UCL, = 2.574X0.035=0.090
LCL, = D; R=0

All ranges are within limits.

Incidently the long run average value Rf/ owhere o is the population
standard deviation stabilises at a constant vadmetéd byd, which again

depends on subgroup or sample size. So, an estohatandard deviation
is provided byR / d,
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For subgroup size 3,€1.693
The estimate of standard deviatiod= 0.035/1.693 = 0.027

This standard deviation is a measure of variability

Setting Limit for Averages

1. Since specification is given betwerlC + 0.05 for future control the
target is kept at 2.10 (Lower Specification Limit Upper Specification
Limit/2) and control limits are calculated as

+ A, R (homogenised) from target

where A= 1.023 X 0.035 = 0.036

Upper Control Limit =2.10 + 0.036 = 2.136

Lower Control Limit = 2.10 - 0.036 = 2.064

After installing charts fixed number (here 3) obgwoup observations are to
be collected and from each ‘rational' sub grodipand R are to be
calculated and plotted on the respective chartsccé&ssive points can be
joined by straight lines. So long as the plotteth{s exhibit natural patterns
of variation within the control charts, no acti@called for since the process
Is in control. But as soon as any abnormal patérariation is noticed, we
must hunt for the trouble-maker and not rest tél @atch the culprit.

Natural pattern of variation in control charts

So long as the process conditions are quite stablethe process is
governed only by chance causes, the behavioureoplthtted points should
satisfy all the following conditions:

1. Most of the points are centered around the aklirtie.

2. A few of the points are spread out and apprdaettontrol limits.

3. None of the points (or at most only a very rane occasional point)
exceeds the control limits.
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Unnatural pattern of variation in control charts

The various indications and conclusions are presentthe following list:

Table : Unnatural patterns and conclusions frontrobohart

SI.No. Pattern of points Conclusions
1. Point violating control limits Change in level
2. Run of points on same side of centrebustained shift in level
line but within control limits
- 7 Successive
- 10 outof 11
- 12 outof 14
- 14 out of 17
- 16 out of 20
3. Trend of points Gradual change in ley
4, Points mostly near UCL as well as | Two or more
LCL overlapping distribution
of characteristic under
observation
5. Appearance of cycles Some factor influeng
the monitoring
characteristic
periodically
6. Points too close to central line In correctaiadil
subgrouping
7. Correlation betweenX and R Charts Skewness in underlying

distribution
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Factors forX — R Charts

Table-A

Factors for estimating s from R

No. of A, Ds Dy For the Estimate
Observations in from R (d,)
a sample
2 1.880 0 3.268 1.128
3 1.023 0 2.574 1.693
4 0.729 0 2.282 2.059
5 0.577 0 2.114 2.326
6 0.483 0 2.004 2.534
7 0.419 0.076 1.924 2.704
8 0.373 0.136 1.864 2.847
9 0.337 0.184 1.816 2.970
10 0.308 0.223 1.777 3.078
11 0.285 0.256 1.744 3.173
12 0.266 0.284 1.717 3.258
13 0.249 0.308 1.692 3.336
14 0.235 0.329 1.671 3.407
15 0.223 0.348 1.652 3.472
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Control Charts Based On Weighted Averages

The Moving-Average Control Chart

Shewhartx control chart is relatively insensitive to smdilfts in the
process mean. Various modifications and suppleshenteria have been
suggested to improve its ability to detect smailtsh Control charts based
on the moving average are also very effective teatag small process
shifts.

Suppose that samples of sizhave been collected, and gt X, ,....., X; ,....

denote the corresponding sample means. The mavieigge of spaw at
timet is defined as

X, + Xyt X
=t t-1 t—w+l
Mt_

W
That is, at time periot] the oldest sample mean is dropped and the newest
one added to the set. The variance of the moweggeM, is

1 1 t o? o?

v(M,) > V(%) >
= X )J=—— - =
Yowlistwar Y wRisttwa 0 nw

Therefore, ifx denotes the center line of the control chart, tien3-sigma

control limits forM, are

UCL=x + 2
A NW

and

LCL =x-2_

Jnw

The control procedure would consist of calculatinmg new moving average
M, as each sample meaq becomes available, plottindv, on a control

with upper and lower control limits and concludihgt the process is out of
control if M, exceeds the control limits. In general, the magi@ of the

shift of interest anav are inversely related; smaller shifts should barded
against more effectively by longer moving averages.
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Example

An X control chart with center lings =1C.0 and upper and lower 3-sigma

control limits at 16.0 and 4.0 is shown in Figure Yalues of the sample
statistic X, plotted on the chart for periods 1,2, .... ,t ase&t in table — 1.

The statistic plotted on this chart will be

)_(t +)_(t—1+"‘ +)_(t—7
8

M, =

for periodt=8. For time periodd<t <8 the average of the observations

for periods 1,2, ... tis plotted. The values ofsinanoving averages are
shown in Table 1.

The control limits for the moving average contrdlad may be easily
obtained. Since for th& chart we havedo, =60 theno, = o /+/n = 20.

Consequently, we find the upper and lower contioits for the moving-
average control chart as

UCL =x+ 3% 5 +3%% 1004+ BN20) _;5 05
nw W J8
and
- 30 - 30 (3)(20)
LCL= x— =x-—2=100-2L—""=788
Jnw Jw J8
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Table 1 : Data and Calculations for the Moving-Aag Control Chart

Sample,t X, M, Control Limits for M,
LCL UCL
1 10.5 10.5 4.00 16.00
2 6.0 8.25 5.76 14.24
3 10.0 8.83 6.54 13.46
4 11.0 9.38 7.00 13.00
5 12.5 10.00 7.32 12.68
6 9.5 9.92 7.55 12.45
7 6.0 9.36 7.73 12.27
8 10.0 9.44 7.88 12.12
9 10.5 9.44 7.88 12.12
10 14.5 10.50 : :
11 9.5 10.44
12 12.0 10.57
13 12.5 10.57
14 10.5 10.70
15 8.0 10.50
16 9.5 10.44
17 7.0 10.00
18 10.0 9.44
19 13.0 9.88
20 9.0 9.51
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Sample,t X M, Control Limits for M,
LCL UCL
21 12.0 9.45
22 6.0 8.89
23 12.0 9.39
24 15.0 10.08
25 11.0 10.58
26 7.0 10.21
27 9.5 9.77
28 10.0 9.90
29 12.0 9.90
30 8.0 10.15
31 9.0 9.78
32 13.0 9.53
33 11.0 9.53
34 9.0 9.78
35 10.0 9.84
36 15.0 10.47
37 12.0 10.47
38 8.0 10.47

The control limits forM, apply for periods=8. For period 0< t <8, the

control limits are given byx 30 /+/nt. These control limits are shown in

Table. An alternative procedure that avoids usipgcial control limits for
periods t < w is to use an ordinary chart until at leastv sample means
have been obtained.

The moving-average control chart is shown in FigeireNo points exceed
the control limits. Note that for the initial peds t < w the control limits
are wider than their final steady-state value. Mgwaverages that are less
than w periods apart are highly correlated, and this mofeemplicates
interpreting patterns on the control chart. Thisasily seen by examining.

The moving-average control chart is more effecthan the usuak chart in
detecting small process shifts. Using both the ingpaverage andx
control charts simultaneously can also yield goeslults. If the two charts
are used simultaneously, the process is considerdse out of control if
either M, or X, (or both) plot outside their respective controhits. It is
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also helpful to plot the pointdM, on a standardx, chart, so that a single
chart could be used to record the data.

Moving-average control charts can also be use@dses where each sample
consists of a single observation. This situatimecuos frequently when
production of a single unit of product requireseaylong time, and where
automatic measurement and test procedures are used.

162



CHAPTER - 13

FORECASTING AND TIME SERIES

INTRODUCTION

Forecasting helps managers respond quickly andraety to market
changes and customer needs. If various activitiesrations and processes
are properly planned and organized, the controbasier and smoother.
Forecasting helps reducing failures and cost ikimgaunnecessary changes
in the processes and systems. For example, ifléneand for the product
can be estimated accurately, the operational effay of the organization
goes up.

Forecasting deals with what we think will happenthe future. Planning
deals with what we think should happen in the fuituThrough adequate
planning, we attempt to change and control futiwrents and forecasting
helps us to predict those future events.

Good planning uses forecasts as a valuable inpygidoning the design and
operations of an organization. Forecasts are nagesfr planning,

scheduling and controlling the system to faciliteféective and efficient
output of goods and services.

Marketing uses forecasts to plan products, pricipgsitioning and

promotion purposes. Finance uses forecastingrfantial management and
for allocation of funds. Operations managers useechsts for the
procurement of raw material, fixing targets, schiedu of jobs and

equipments. Top management uses forecasts fomiparexpansions,
diversification and for making strategic decisiofidius, forecasting plays a
vital role in the decision making process of a nggma

Planning decisions may be classified as long, nme@ind short term. Long
term decisions involve the development of new peotsltand markets,
setting up new plants, expansions and diversiboati Long term may mean
about 2 years or more into the future. Such deassigenerally lack
guantitative information and historical data on ethto base our forecasts.
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The collective wisdom of experts in the field playsignificant role in the
development of forecast for long term planning.

Medium term decisions involve issues such as fipngduction and sales
targets, determining manpower requirements, etc.

Medium range may be taken to mean from 6 monthsuartd about 2 years,
which is the normal time frame for aggregate plagnibudgeting and
resource acquisition and allocation decisions.

Short range refers to less than 6 months. Exangfl@seas where such a
time frame is appropriate are the procurement alerads, scheduling of
jobs and activities. Similarly, managers need dasts to make decisions
about controlling inventory, production, labour amwsts. Accurate
forecasts are also needed for immediate futureshdarys, and weeks ahead.

Some distinguish between forecasts and predictidn®recast is seen as an
estimate of a future event based on scientific pudlogy that uses past
data. Forecasting requires past data, statiséchiniques and managerial
skills.

On the other hand, a prediction is an estimateutiré events obtained
through subjective factors like, hunch, experiemce intuition. The various
methods used for forecasting can be classifiedl&snfs:

()  Qualitative methods

(i)  Quantitative methods based on averages, mowawgrages and

exponential smoothing

(i) Regression methods

(iv) Econometric models

(v) Auto Regressive and Moving Average (ARMA) mael

FORECASTING FOR LONG TERM DECISIONS

Long term decisions cover areas such as capagignsion, plant or facility
location, mergers and acquisitions, and productld@ment over a longer
time span. These decisions require forecasts &mynyears into the future.
For making long term decisions, past data may eat beliable indicator of
future events. Under such conditions, we mainlly ren qualitative

forecasting methods.  Qualitative methods dependnupnanagerial
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judgement and experience and not on any specifideimoThus, different
individuals may use the same qualitative technigné arrive at different
forecasts. Quantitative methods for dealing wiliese opinions and
judgements are best suited for long term forecgstin Through such
methods, we can obtain reasonable forecasts ifattee of a great deal of
uncertainty and lack of data. Four such techniquesthe Delphi Method,
the Nominal Group Technique, Survey Methods ane IGfycle Analogy
approaches.

Delphi Method

This method relies on the subjective opinions opests and aims at
minimizing bias and error of judgement. A panélexperts provides

written responses on the questions being considere co-ordinator edits
and summarises the responses. On the basis ofaymiine panel is then
asked to reconsider the individual responses aspbrel again to the set of
guestions prepared. The answers are provideditimgur The responses of
the second round are again summarized and fed tbaitle experts. This

process is repeated three to five times until cigffit convergence is
achieved. In this method, direct interpersondtiens are avoided and
personalities do not conflict nor some membersdmninate the group.

THE DELPHI TECHNIQUE HAS BEEN APPLIED IN THE
FOLLOWING AREAS :

a) Forecasting

b) Evaluating possible budget allocations,

c) Setting corporate goals and objectives

d) Generating and evaluating strategies

e) Exploring urban and regional planning optiomsl a

f) Planning health care systems.
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GUIDELINES FOR CONDUCTING A DELPHI STUDY :
The following guidelines should be followed whilenducting a Delphi
study.

a) All members should agree to serve on the panel.

b) The procedure for conducting the study shouldekgained to the
panelists in detail.

c) Every panel member should be assigned a codeerum

d) Two copies of each questionnaire should be &elhe panelists in
each round so that he can retain a copy for hisreaord.

e) The questionnaires should be easy to understand.

f) It should not contain too many statements. Acpcal limit is
suggested as 25.

g) Contradictory forecasts should be included timaite debate.

h) Injection of moderator’'s opinion should be awmdbecause it has
been found to substantially bias the results.

1) When editing the respondent’'s comments for gtathe intent for the
originator should not be lost. Similarly, whentedj from round to
round, meaning of a statement should not be changed

]) The questionnaire should be pre-tested on adingiguinea pigs
outside the respondent group.

Nominal Group Technique

This technique is similar to the Delphi techniquelowever this method
provides an opportunity for interaction and encgesdiscussions among
the experts and permit creativity. At the endistdssions, the experts who
arrive at a consensus rank the ideas.

Survey Methods

Surveys are designed and conducted to gather rdlenfarmation. Surveys
generally use structured questionnaires. The resgsoto the questionnaires
are obtained through various means:

(a) personal interviews

(b) telephone interviews

(c) mail/fax mode

(d) Internet communications
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Life Cycle Analogy

In this case, predictions are based on the pattetated to the introduction,
growth and saturation phases of similar products.
Product Life Cycle

<« Growth_p g Stability pge—— Diee —p

o
Demand

Time

The demand for a product generally tends to followredictable pattern
called the product life cycle. When a new prodsehtroduced, it has a low
demand during market development phase. Followelyua rapid growth

phase and high demand and finally the demand aecliThe time span for
various phases from birth to death may vary comalag from product to

product. Using various forecasting methods andracheristics of the
product cycle of similar products we can make mgah for product

variety, volumes and capacity needed.

FORECASTING FOR MEDIUM AND SHORT TERM DECISIONS

Medium and short terms forecasts are commonly usedproduction
planning, scheduling, procurement and financiahpiag decisions in an
organisation. The methods are better structuretl ame data based as
compared to long term forecasting. Descriptionsahmon methodologies
follow.
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Time Series Forecasting

Time series analysis methods are used to studyda#sstand to identify the
patterns that are present. These patterns areptiogected into the future.
A time series can be decomposed into component aacaverage level,
trend, seasonality, cycle and error. The magnitade form of the

component are estimated from the available datapmogected forwarded
into the future to make forecasts. Methods usednamving averages and
exponential smoothing.

Moving Averages

The moving averages method is used to estimatavé@ge of a time series
and thereby remove the effect of random fluctuatiorit is most useful
when the time series has no pronounced trend spseahinfluence.

This technique involves calculating the averagetltg n most recent
observation of a time series and using it as tlsesldar forecasts for the next
time period. Large values of n should be usedfome series that is stable
and small values of n if it is susceptible to chamgthe average value.

Exponential Smoothing

This is the most frequently used method for smawthiata. It is a weighted
moving average method that gives recent obsensatioaore weight than
earlier observations.
It requires three items of data:

1. Estimated average of the series for the lasogefA.,) i.e. forecast

for the next period.
2. Demand for the period (;P
3. A smoothing parametefy),0<a < 1.

Forecast for periotis given by
A = a (Demand for this period)+ (- a ) (Average calculated for the

previous period)
=aD + (Q-a)A,

=A,+a (D, -AL)
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Such a forecast for the next period equals thecéstefor the current period
plus a proportion of the forecast error for therent period.
A is a weighted average of all past observatiohgan be written as

the linear combination of past data and weightagexponentially.

For example ifa = 020
Ac = 0.2DR+0.80 A
= 0.20 b+ 0.16 R; + 0.128 R+ 0.1024 I,

Weights given are:

a,al-a), all-a), ...

Example
Week Demand
1 400
2 380
3 411

If the actual Demand for the week 4 is 415. Whdhe forecast for week 5?

1. Using moving average:
411+380+ 400 _

The moving average at the end of week 8 is 2 = 397
Thus forecast for week 4 is 397.
Forecast for week 5, = 415+ 4;“ 380 _ 402

2. Using Exponential smoothing:
Forecast for the week 4 usinga = 0.1

A;=0.10 (411) + 0.90 (390) =392.1
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If the actual demand for week 4 is 415, the avefag&eek 4 would
be:
Az = 0.1x 415 + 0.9x392.1 = 394.4

Causal Forecasting Methods

In this case, we develop a cause and effect rakttip model between the
variable of interest and its causal factors. €&oample, the demand for
tyres of a particular type may be related to theubation of existing
vehicles, road mileage of existing vehicles, weatr rate of tyres and road
conditions. We collect relevant data on thesealdes and use regression
analysis techniques to identify the nature of ta¢istical relationship. The
regression model fitted may be linear, polynomiahon-linear. Once the
regression relationship is established, we makeedigtion based on it.
Causal forecasting methods also include econometndels, simulation
model and input and output models.

Box and Jenkins have proposed a sophisticated itpehrfor stochastic
model building and forecasting using time serigda.da

Auto-Regressive Model, AR(p)

In this case, the current value is expressed asearl combination of p-
previous values of time series and random component

Moving Average Model, MA(Q)

In this model, the current value is made lineapehdent on g previous

error terms.

Mixed Auto Regressive-Moving Average (ARMA) Model

Sometimes, it is advantageous to include both agtessive and moving
averages in the model. This leads to the mixed eegressive (ARMA)
model.
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Activity A
Describe the role of forecasting in planning

Activity B
Describe the method to be used for forecastingntbathly demand for a

newspaper.

Activity C
Describe the advantages of quantitative methodsfooécasting over
gualitative methods

Activity D
What methods you think are used for weather fote@n8
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7. Using a three period moving average predictifreand for the

next period
Period 1 2 3 4 5
Demand 15 24 34 21 35

8. Using exponential smoothing and with alplag = 0.2, predict the

demand for week 7

Week

Demand

21

32

43

43

30

45

GENERAL STEPS IN THE FORECASTING PROCESS

. Identify the General Need.

. Select the Period (Time Horizon) of Forecast

. Select the Indicators Relevant to the Need:

()  Industry Sales

(i)  Competitors (collective) present and projectagbacity.

(i) Population projection (in case product isetitly related to
the population).

(iv) Income levels.

(v) Economic development etc.

. Select the Forecast Model to be Used F, #nowledge of
various forecasting models, in which situationsséhare applicable,
how reliable each one of them is; what type of dateequired. On
these considerations; one or more models can betedl

. Data Collection : With reference to various igadors identified-

collect data from various appropriate sources-dathich is
compatible with the model(s) selected in step (@3&ta should also go
back that much in past, which meets the requiresneinihe model.
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6. Prepare Forecast : Apply the model using the datllected and
calculate the value of the forecast.
7. Evaluate.

TIME SERIES COMPONENT

A seguence of observations on a variable of interesqually spaced points

in time

Variable of Interests :

- Sales - Production

- Demand - No. of Accidents

- Population - No. of Tourists visiting
- Inventory - Traffic Intensity

- Power Consumption

Equally Spaced Points in Time

Days Quarters
Weeks Years
Months
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Example of Time Series

TIME 1985 1986 1987 1988 1989 199( 1991

SALES| 2.2 2.1 2.4 2.6 2.7 2.9 2.8
(Rs. Crore)

Time Series Analysis :

We use quantitative techniques to study past bebawif a Time Series to
 |dentify the pattern present
» Detect changes in pattern
» Use changes and pattern to predict the future behalTime Series

» Forecasts provide valuable input for decision mgkin

Components or Variations in Time Series
* Trend
» Cyclical Fluctuation
e Seasonal Variation

* lrregular or Random Variation

TREND : Long Term direction in which the Seriesrisving
The value of the variable tendstwyease or decrease over a long
period of time.

Example
- Steady increase in cost of living
Increase in Population

No. of tourist visiting a particular place
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Trend Reflects the Net Effect of Factors :

» Change in population

» Demographic Characteristics

» Technological Improvements

» Economic Development

» Gradual Shift in Habit and Attitude

These factors tend to operate fairly gradually emdne direction or other
over a long period.

We describe the trend component by a smooth canisicurve types of
trends

e Linear trend
* Non-linear trend

» Linear trend or straight line trend

Y =a+ bt +e

Y : Value of dependent variable

—

: Value of time variable
: The Y — intercept (value of Y when t = 0)
. Slope of the trend line

®© T 2

: Random component
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* Non - linear trend : Quadratic trend :

Y=a+bt+é&+e

Example of Quadratic trend :

T (Year) 1992 1993 1994 1995 1996
Y (Sales in 13 24 39 65 106
Millions)

Y = 393 + 1580t + 2484t>

Wheret = T —1994. Predict sales for the ye@971

» Exponential trend :
Y =k d for k>c,a>0

Fora>1 : Growth curve
For 0 <a <1 Decay curve

Example: Population, Money invested, Depreciatiof\FG

e Cyclical variation :
Component of a time series that trends to oscildeve and below the
trend line for periods longer than one year

Factors leading to cyclical variation
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» Buildups and depletion of inventories
» Shifts in rates of capital expenditure
* Year to year variation in harvests

» Change in Government monetary and fiscal policy.

We first eliminate the effect of seasonal compon@antusing time series
consisting of annual data.

Measures of cyclical variation
» Percent of trend

» Relative cyclical residual

Seasonal variation :

* Means a periodic movement in a time series wher@gas not
longer than one year.
* A periodic movement is one which repeats at reguatarval of time.

* Itis repetitive and predictable.

Main Causes :

Climatic changes of different seasons
Customs and habits which people follow at diffétenes

We can project past pattern into future and elineings effect from time
series to get deseasonalized time series.
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Ratio to moving average method :

* Develop an index to describe the degree of seasamialtion index is
based on a mean of 100

» Periodic fluctuation are eliminated by taking mayimaverage of
period equal to the period of fluctuation

* Moving averages are centred against the time wisithe mid-point
of the time points included in the calculation afving averages.

* When period is odd, moving averages corresponre point given
in time series

* When period is even, we calculate a subsequentit2m moving
averages.

» Calculate percentage of actual value to moving esdbr each time
point.

» Collect these percentage for some period and fiedage by deleting
extreme values.

* Adjust the modified means.

Year Sales per quarter ( x $ 10,000)

I [l [ v
1988 16 21 9 18
1989 15 20 10 18
1990 17 24 13 22
1991 17 25 11 21
1992 18 26 14 25

1. Deseasonalizing the time series
2. Developing the trend line
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3. Finding the cyclical variation around therideine

Step 2:4| Step 3:4 Step 4.
Step | Quarter | Quarter | Percentage
1:4 Moving | Centered of Actual to
Actual | Quarter| Average| Moving Moving
Year | Quarter| Sales | Moving (5) = (4) | Average| Average
(2) (2) (3) Total 4 (6) (7) =
6
1988 I 16
Il 21
11 9 64 16.00 | 15.825 56.7
\Y% 18 63 15.75 15.625 115.2
1989 I 15 62 15.50 | 15.625 96.0
I 20 63 15.75 15.750 127.0
11 10 63 15.75 16.000 62.0
\Y% 18 65 16.25 16.750 107.5
1990 I 17 69 17.25 17.625 96.5
Il 24 72 18.00 | 18.500 129.7
1] 13 76 19.00 19.00 68.4
\Y% 22 76 19.00 | 19.125 115.0
1991 I 17 77 19.25 19.000 89.5
I 25 75 18.75 18.625 134.2
1] 11 74 18.50 | 18.625 59.1
\Y% 21 75 18.75 18.875 111.3
1992 I 18 76 19.00 | 19.375 92.9
Il 26 79 19.75 | 20.250 128.4
1] 14 83 20.75
\Y 25
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Step 5
Year | ] [ IV
1988 -- -- 56.7 115.2
1989 96.0 127.0 2.% 107.5
1990 96.5 129.7 8.6 115.0
1991 89.5 134.2 9.6 111.3
1992 92.9 128.4 -- --
Modi-
fied 188.9 258.1 121.6 226.3
sum
Modified mean : Quarter I188'9 = 9445
P52 - 12905
Illﬁ = 6080
2
IV—226'3 =11315
2
397.45
Step 6
Adjusting factor = —4?0 =1.0064
397.45
Quarter Indices X Adjusting Factor = Seadona
Indices
I 94.45 X 1.0064 = 95.1
Il 129.05 X 1.0064 = 129.9
11l 60.80 X 1.0064 = 61.2
v 113.15 X 1.0064 = 113.9
Sum of seasondidges = 400.1
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Year Quarter Actual Sales | Seasonal Index /| Deseasonalized Salé
(1) (2) 3 100 ®)=3) + (4)
(4)
1988 I 16 0.951 16.8
Il 21 1.299 16.2
1] 9 0.612 14.7
\Y 18 1.139 15.8
1989 I 15 0.951 15.8
Il 20 1.299 15.4
1] 10 0.612 16.3
\Y 18 1.139 15.8
1990 I 17 0.951 17.9
Il 24 1.299 18.5
[l 13 0.612 21.2
\Y 22 1.139 19.3
1991 I 17 0.951 17.9
Il 25 1.299 19.2
I 11 0.612 18.0
v 21 1.139 18.4
1992 I 18 0.951 18.9
Il 26 1.299 20.0
1] 14 0.612 22.9
\Y 25 1.139 21.9
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CHAPTER - 14

SIX SIGMA CONCEPT IN
ENVIRONMENTAL MANAGEMENT

What is "Six Sigma"?

Six Sigma is a well-structured, data-driven methogyp for eliminating
defects, waste, or quality control problems oflafids in manufacturing,
service delivery, management, and other businessiti@s. Six Sigma
methodology is based on the combination of weldgsthed statistical
guality control techniques, simple and advanced daglysis methods, and
the systematic training of all personnel at eveayel in the organization
involved in the activity or process targeted by Sigma.

Why is Six Sigma so popular?

Six Sigma methodology has recently gained wide [@ofty because it has
proven to be successful not only at improving qudut also at producing
large cost savings along with those improvementsnes spectacular Six
Sigma "success stories" at large corporations heaen widely publicized
and they captured the imagination of many busitesssers.

For example, Jack Welch, a CEO of General Elecoie of the largest
manufacturing businesses in the world) saiix Sigma is the most
important initiative GE has ever undertaken--ipesrt of the genetic code of
our future leadership.and he credits Six Sigma with cost savings at IGE i
the range of billions of dollars.

Technically Speaking...

The term Six Sigma (a trademark of Motorola, whemriginated over 12
years ago) reflects the statistical objective @f éipproach, namely striving
to achieve a negligible number of defects, corredpw to the probability
associated with a six sigma value for the normareuApplying the normal
curve, Six Sigma attempts to relegate defects asadityg problems to the
very tails of the distribution, making such probtefterally rare exceptions
in a process that operates almost without deféatschieve this "Six Sigma
objective," a process must not produce more thdndafects per million
opportunities to produce such defects (where aetdéfis defined as any
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kind of unacceptable outcome produced by the psogeder scrutiny). Note
that the 3.4 defects-per-million criterion actuatiyrresponds to a normal z
value of 4.5 because the Six Sigma approach alfowd.5 times sigma

worth of so-called "drift" or process "slop" (terchby Motorola the "Long-

Term Dynamic Mean Variation"). Hence, the most basatistical tool for

the Six Sigma effort is the Six Sigma calculatoatthwill compute the

number of defects given the respective one, twasix. sigma process. In
addition, a wide variety of much more complex ahalyechniques are

recommended by the Six Sigma approach and needetosbd at the

consecutive stages of the Six Sigma project, dapgrmh the nature of the
process.

Key Concepts of Six Sigma

At its core, Six Sigma revolves around a few keycapts.

Critical to Quality: | Attributes most important to the human being
Defect: Failing to deliver what the human being wants
Process Capability: | What your process can deliver
Variation: What the human being sees and feels
Stable Operations: | Ensuring consistent, predictable processes to
improve
what the human being sees and feels
Design for Six Designing to meet human being needs and process
Sigma: capability

Human Beings Fedl the Variance, Not the Mean

Often, our inside-out view of the business is basedverage or mean-
based measures of our recent past. Customersjddgé us on averages,
they feel the variance in each transaction, eaddpct we ship. Six Sigma
focuses first on reducing process variation andhtbe improving the
process capability.

Customers value consistent, predictable businessassses that deliver
world-class levels of quality. This is what Sixragstrives to produce.
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How does it work?

The power of Six Sigma lies in its "empirical," datriven approach (and its
focus on using quantitative measures of how théesyss performing) to

achieve the goal of the process improvement andti@ar reduction. That is

done through the application of so-called "Six Sagmprovement projects”
which, in turn, follow the "Six Sigma DMAIC" sequen of steps (Define,
Measure, Analyze, Improve, and Control). Specilical

Define. The Define phase is concerned with the definition of project
goals and boundaries, and the identification aigassthat need to be
addressed to achieve the higher (better) sigma leve

Measure. The goal of théMeasure phase of the Six Sigma strategy is
to gather information about the current situatit;mobtain baseline
data on current process performance, and to iggofblem areas.
Analyze. The goal of theAnalyze phase of the Six Sigma quality
effort is to identify the root cause(s) of qualipyoblems, and to
confirm those causes using the appropriate dalgsas#ools.

Improve. The goal of thdmprove phase is to implement solutions
that address the problems (root causes) identifigthg the previous
(Analyze) phase.
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Control. The goal of the&Control phase is to evaluate and monitor the
results of the previous phadenprove).

There is also a variation of the fundamental Sign&i DMAIC sequence,
calledDMADYV, applicable to the design of new processes. IMHADV
sequence, thBefine stage is identical to the one@MMAIC (see above); the
Measure stage focuses on the measurement of the customafiora
market/application needs, taalyze stage deals with the analysis of the
process options and, finally, theprove and Control stages are replaced
by the Design (design the process to meet the customer and/or
market/application needs) anterify (verify the design performance and
ability to meet the criteria as set at the Desigrel) stages. Each of these
steps involves using specific analytic (quanti@fivnethods from a wide
selection of methods recommended by the Six Sigopaocach (depending
on the nature of the process).

The primary goal of Six Sigma is to improve custorsatisfaction, and

thereby profitability, by reducing and eliminatinigfects. Defects may be
related to any aspect of customer satisfactiorh prg@duct quality, schedule
adherence, cost minimization. Underlying this gmalthe Taguchi Loss
Function which shows that increasing defects ldadscreased customer
dissatisfaction and financial loss. Common Six Signetrics include defect
rate (parts per million or ppm), sigma level, psxeapability indices,
defects per unit, and yield. Many Six Sigma metgaa be mathematically
related to the others.The Six Sigma drive for defecluction, process
improvement and customer satisfaction is basedendtatistical thinking"

paradigm

Everything is a process

All processes have inherent variability

Data is used to understand the variability and elrprocess
improvement decisions

As the roadmap for actualizing the statistical kimg paradigm, the key
steps in the Six Sigma improvement framework ardénBe- Measure -

Analyze - Improve - Control (see Figure 1). Six rBaydistinguishes itself
from other quality improvement programs immediaielyhe "Define" step.

When a specific Six Sigma project is launched, ¢bstomer satisfaction
goals have likely been established and decompodedsubgoals such as
cycle time reduction, cost reduction, or defectuctmn. (This may have
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been done using the Six Sigma methodology at anbssiorganizational
level.) The Define stage for the specific projeatis for baselining and
benchmarking the process to be improved, decomgasia process into
manageable sub-processes, further specifying goalgoals and
establishing infrastructure to accomplish the godisalso includes an
assessment of the cultural/organizational change rthight be needed for
success.

Once an effort or project is defined, the team itally proceeds through
Measurement, Analysis, Improvement, and ContropssteA Six Sigma
improvement team is responsible for identifyingev@nt metrics based on
engineering principles and models. With data/infation in hand, the team
then proceeds to evaluate the data/informationtramds, patterns, causal
relationships and "root cause," etc. If neededcigpeexperiments and
modeling may be done to confirm hypothesized reafetips or to
understand the extent of leverage of factors; bartymmprovement projects
may be accomplished with the most basic statistindl non-statistical tools.
It is often necessary to iterate through the Meaguralyze-Improve steps.
When the target level of performance is achievedirol measures are then
established to sustain performance. A partialofstpecific tools to support
each of these steps is shown in Figure 1.

Define |» Measure > Analyze | > Improve>| Control
» Banchmark » 7 Basic Tools = Cause B Efect « Design of Statistical
= Baseline e Defiect Diagrams Experiments Corntrols:
» Contract/Charter  Metnics = Failure Modes & = Madeling « Cartrol
o Kano Model « Daka Effects Analysis s Talerancing Charts
« Vol of the Collection e Dacision & Risk = Robust = Time Series
Customer Formis, Fan, Anahysis Design methads
= Voice of the Lgistics » Statistical
Business + Sampling Inference Mion-Statistical
s Quality Function 1 echniques s Control Charts Cantrols;
Ceployrment = Capahility = Procedural
= Priocess Fow * Reliabiity adherence
Map Arialysis = Perforrnance
= Project » Riook Couse Mot
Management Aanalysis = Preventive
= "Management -5 WWhy's activities
by Fact” = Dyabems

-4 ‘What's Thinking
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Note: Many tools can be effectively used
multiple steps of the framework. Tools that
not particularly relevant to software applicatit
have not been included in this list.

Figure 1: Six Sigma Improvement Framework and Toolkit

An important consideration throughout all the Sigrga steps is to
distinguish which process substeps significantigtcbute to the end result.
The defect rate of the process, service or finaldpct is likely more

sensitive to some factors than others. The anaplsse of Six Sigma can
help identify the extent of improvement neededachesubstep in order to
achieve the target in the final product. It is irtpat to remain mindful that
six sigma performance (in terms of the ppm metsa)ot required for every
aspect of every process, product and service. thasgoal only where it
guantitatively drives (i.e, is a significant "casitknob" for) the end result of
customer satisfaction and profitability.

The current average industry runs at four sigmachvhorresponds to 6210
defects per million opportunities. Depending on #act definition of

"defect” in payroll processing, for example, thignsa level could be
interpreted as 6 out of every 1000 paychecks hawamgerror. As "four
sigma" is the average current performance, therénaustry sectors running
above and below this value. Chemists went testoigMTBE in water if

operate at two sigma level then commit 308537 srrper million

opportunities.

On the other extreme, in (U.S.) air quality fatali&tes run at better than six
sigma, which could be interpreted as fewer thanf&tdlities per million
persons - that is, fewer than 0.00034 fatalitias}j9® persons.

As just noted, flight fatality rates are "betteathsix sigma,” where "six
sigma" denotes the actual performance level rathen a reference to the
overall combination of philosophy, metric, and impement framework.
Because customer demands will likely drive differeperformance
expectations, it is useful to understand the maéttiead origin of the
measure and the term "six-sigma process." Condgpttlae sigma level of
a process or product is where its customer-driyaecifications intersect
with its distribution. A centered six-sigma procéss a normal distribution
with mean=target and specifications placed 6 stahdaviations to either
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side of the mean. At this point, the portions oé ttistribution that are
beyond the specifications contain 0.002 ppm of daga (0.001 on each
side). Practice has shown that air quality expesdnby people shows a
shift (due to drift over time) of 1.5 standard deans so that the mean no
longer equals target. When this happens in a gixiprocess, a larger
portion of the distribution now extends beyond #ipecification limits: 3.4

ppm.

SPECIFICATION

L5L BANGE LSL
s
/ !
|II i
J |
/ \ |
; '\ 66803 |
- pem
Oppm | 3.4 ppm f” -\"w’f 3.4 pom
"‘"1- \\ _ .-""-f * H'"\-\. lf.’r

— 1.5n|4—

:

=-_— 3§ —7— +¥z =

- e R — hE @ —

Figure 2: Six Sigma Process with Mean Shifted from Nominallb5

Assumptions:

Normal Distribution

Process Mean Shift of Jo5rom Nominal is Likely
Process Mean and Standard Deviation are known
Defects are randomly distributed throughout units
Parts and Process Steps are Independent

For this discussion, original nominal value = targe
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Key

o =standard deviation

K = center of the distribution

(shifted 1.7 from its original , on-target location)
+/-3¢ & +/-60 show the specifications relative to

o the original target

~n

Figure 2 depicts a 1o3shifted distribution with "" annotations. In
manufacturing, this shift results from things sashmechanical wear over
time and causes the six-sigma defect rate to beGofngpm. The magnitude
of the shift may vary, but empirical evidence irades that 1.5 is about
average. Does this shift exist in the software @ss@ While it will take time
to build sufficient data repositories to verify gshassumption within the
software and systems sector, it is reasonablestsupmne that there are factors
that would contribute to such a shift.

Process Map
A process map

» Graphically outlines the sequence of a process

» Shows how steps in a process relate to each other
» |dentifies bottlenecks

* Pinpoints redundancies

» Locates waste in the process

THE COMMON METRIC: DEFECTSPER UNIT (DPU)
DPU is the best measure of the overall qualitthe process.

* DPU is the independent variable.
* Process yields are dependent upon DPU.

We checked 500 samples of ambient air and theséhdeéfects then,

d.p.u. = d/u = 10/500 = 0.02
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In a sample of ambient air we check for the follogvi

a) organic compounds soluble in benzene
b) SO solution
c) NO, concentration

d) CQO concentration
e) Particulate matter

Then there are 5 opportunities for the defectscttuo Then, the total no. of
opportunities = m u = 5x500 = 2500

Defects per opportunity, d.p.o. = d/(m u) = 10/2500.004
If expressed in terms of d.p.m.o. (defects periomllopportunities) it
becomes

d.p.m.o . = d.p.o. x 0= 4000 PPM

From d.p.o., we go to the normal distribution tabdend calculate |[ZI and
corrected to 8T by adjusting for shift (1.5 s) then,

UZLT = 2.65: and
UZsT=2.65+15=4.15

No. of opportunities = No. of points checked

If you don’t check some points then it becomes sspa opportunity. We
should take only active opportunities into our a&tion of d.p.o., and s
level.

Customer Satisfaction and
Defects Per Unit (DPU)

Reducing the Defects Per Unit (DPU) in the entn@cpss:
* Reduces delivery delinquencies;
* Reduces delivered defects and early life faitate

Process Cost and DPU

* Reducing the Defects Per Unit (DPU) in the entnecpss:

» Reduces the cycle time per unit....

* Reducing WIP (Work in Process);

* Reducing inventory carrying costs; and defectysigland repair cost
per unit; therefore.Decreases Manufacturing Cost Per Unit
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Environmental Monitoring & Response System

Potential Pollution Detection Data Transfer Auto-alert
Event

i

L

Findings Corrective Check
Reported Action Operations

A Vision for the Future

» Develop awarning system to prevent threats to human health and the
environment and to act swiftly when such potential threats become a
reality.

» Usemonitoring data to develop better rules and to monitor their
effectiveness.

» Beableto quickly respond to public health and environmental
concerns raised by the public.

» Enhance the ability to provide accurate and timely information to the
public concerning environmental quality.
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Environmental Monitoring and
Response System: Water Pilot Project

Continuous
Monitoring Station

-Hourly physical measurements

- Mutrient measurements avery

B haours

Submersible
Pump Physical Parameters Nutrient Parameters
Measured hourly Measured every 6 hours
ey 5 -Dissolved Oxygen -Nitrate
-pH -Ammonia
-Conductivity -Total Reactive Phosphate
-Temperature
Turbidity

Environmental Monitoring and Response System
Concept

Agricultural Industrial/Municipal
Effluent Effluent

Air or Water Quality

e
f'%m Monitoring

Drinking Water
on Environmental Quality Treatment

Regional Office
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Managing for Environmental Results

* Environmental Results Management System

* Requires the agency to focus on achieving enviroaheesults
» Connects results management with budget planning

* Based upon the Plan-Do-Check-Adapt cycle

* Agency’s Strategic Plan

» Agency’s Workplan

» Division Workplans

* Environmental Performance

* Quarterly Performance Report
* Quarterly Management Review
* Monthly Division Measures

* Department Results

- Legislative Reports

Six Sigma

» System for building and sustaining performance

» Uses specific tools for process improvement

 PCA uses Six Sigma because our resources are degrdaut our
workload is growing

» Measurement of processes plays a significant role

« Requires calculation of cost/benefit and environtadmenefit
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Glossary of Definitions

DFSS- (Design for Six Sigma) is a systematic methogylotilizing tools,
training and measurements to enable us to desgglupts and processes
that meet customer expectations and can be produc&s Sigma quality
levels.

DMAIC - (Define, Measure, Analyze, Improve and Contioh process for
continued improvement. It is systematic, sciengifind fact based. This
closed-loop process eliminates unproductive stefpsn focuses on new
measurements, and applies technology for improvemen

Six Sigma— A vision of quality which equates with only 3léfects per
million opportunities for each product or servicansaction. Strives for
perfection.

Quality Tools
Associates are exposed to various tools and teefasaed to quality. Below
are just a few of them.

Control Chart — Monitors variance in a process over time andsatee
business to unexpected variance which may causetdef

Defect Measurement- Accounting for the number or frequency of defect
that cause lapses in product or service quality.

Pareto Diagram— Focuses on efforts or the problems that havethatest
potential for improvement by showing relative freqay and/or size in a
descending bar graph. Based on the proven Paretmpgbe: 20% of the
sources cause 80% of any problems.

Process Mapping- lllustrated description of how things get dowhjch
enables participants to visualize an entire proaedgsidentify areas of
strength and weaknesses. It helps reduce cycleamnua@lefects while
recognizing the value of individual contributions.

Root Cause Analysis- Study of original reason for nonconformance \sith

process. When the root cause is removed or codgtie nonconformance
will be eliminated.
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Statistical Process Control- The application of statistical methods to
analyze data, study and monitor process capahitityperformance.

Tree Diagram — Graphically shows any broad goal broken intéedgnt
levels of detailed actions. It encourages team neesiio expand their
thinking when creating solutions.

Quality Terms

Black Belt — Leaders of team responsible for measuring, amalyz
improving and controlling key processes that inficee customer satisfaction
and/or productivity growth. Black Belts are fulivte positions.

Control — The state of stability, normal variation anddc&ability. Process
of regulating and guiding operations and processe®) quantitative data.

CTQ: Critical to Quality (Critical "Y") — Element of a process or practice
which has a direct impact on its perceived quality.

Customer Needs, Expectations Needs, as defined by customers, which
meet their basic requirements and standards.

Defects— Sources of customer irritation. Defects are gdstboth
customers and to manufacturers or service provid@dirainating defects
provides cost benefits.

Green Belt— Similar to Black Belt but not a full-time positio

Master Black Belt— First and foremost teachers. They also review and
mentor Black Belts. Selection criteria for Mastdéadk Belts are quantitative
skills and the ability to teach and mentor. Ma8tack Belts are full-time
postions.

Variance — A change in a process or business practicaribgtalter its
expected outcome.
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APPENDI X

STATISTICAL TABLES

196



TABLE A

AREASUNDER THE STANDARD NORMAL CURVE

Z

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-3.4
-3.3
-3.2
-3.1
-3.0

-2.9
-2.8
-2.7
-2.6
-2.5

-2.4
-2.3
-2.2
2.1
-2.0

-1.9
-1.8
-1.7
-1.6
-1.5

-1.4
-1.3
-1.2
-1.1
-1.0

-0.9
-0.8
-0.7
-0.6
-0.5

-0.4
-0.3
-0.2
-0.1
-0.0

0.0003
0.0005
0.0007
0.0010
0.0013

0.0019
0.0026
0.0035
0.0047
0.0062

0.0082
0.0107
0.0139
0.0179
0.0228

0.0287
0.0359
0.0446
0.0548
0.0668

0.0808
0.0968
0.1151
0.1357
0.1587

0.1841
0.2119
0.2420
0.2743
0.3085

0.3446
0.3821
0.4207
0.4602
0.5000

0.0003
0.0005
0.0007
0.0009
0.0013

0.0018
0.0025
0.0034
0.0045
0.0060

0.0080
0.0104
0.0136
0.0174
0.0222

0.0281
0.0352
0.0436
0.0537
0.0655

0.0793
0.0951
0.1131
0.1335
0.1562

0.1814
0.2090
0.2389
0.2709
0.3050

0.3409
0.3783
0.4168
0.4562
0.4960

0.0003
0.0005
0.0006
0.0009
0.0013

0.0017
0.0024
0.0033
0.0044
0.0059

0.0078
0.0102
0.0132
0.0170
0.0217

0.0274
0.0344
0.0427
0.0526
0.0643

0.0778
0.0934
0.1112
0.1314
0.1539

0.1788
0.2061
0.2358
0.2676
0.3015

0.3372
0.3745
0.4129
0.4522
0.4920

0.0003
0.0004
0.0006
0.0009
0.0012

0.0017
0.0023
0.0032
0.0043
0.0057

0.0075
0.0099
0.0129
0.0166
0.0212

0.0268
0.0336
0.0418
0.0516
0.0630

0.0764
0.0918
0.1093
0.1292
0.1515

0.1762
0.2033
0.2327
0.2643
0.2981

0.3336
0.3707
0.4090
0.4483
0.4880

0.0003
0.0004
0.0006
0.0008
0.0012

0.0016
0.0023
0.0031
0.0041
0.0055

0.0073
0.0096
0.0125
0.0162
0.0207

0.0262
0.0329
0.0409
0.0505
0.0618

0.0749
0.0901
0.1075
0.1271
0.1492

0.1736
0.2005
0.2296
0.2611
0.2946

0.3300
0.3669
0.4052
0.4443
0.4840

0.0003
0.0004
0.0006
0.0008
0.0011

0.0016
0.0022
0.0030
0.0040
0.0054

0.0071
0.0094
0.0122
0.0158
0.0202

0.0256
0.0322
0.0401
0.0495
0.0606

0.0735
0.0885
0.1056
0.1251
0.1469

0.1711
0.1977
0.2266
0.2578
0.2912

0.3264
0.3632
0.4013
0.4404
0.4801

0.0003
0.0004
0.0006
0.0008
0.0011

0.0015
0.0021
0.0029
0.0039
0.0052

0.0069
0.0091
0.0119
0.0154
0.0197

0.0250
0.0314
0.0392
0.0485
0.0594

0.0722
0.0869
0.1038
0.1230
0.1446

0.1685
0.1949
0.2236
0.2546
0.2877

0.3228
0.3594
0.3974
0.4364
0.4761

0.0003
0.0004
0.0005
0.0008
0.0011

0.0015
0.0021
0.0028
0.0038
0.0051

0.0068
0.0089
0.0116
0.0150
0.0192

0.0244
0.0307
0.0384
0.0475
0.0582

0.0708
0.0853
0.1020
0.1210
0.1423

0.1660
0.1922
0.2206
0.2514
0.2843

0.3192
0.3557
0.3936
0.4325
0.4721

0.0003
0.0004
0.0005
0.0007
0.0010

0.0014
0.0020
0.0027
0.0037
0.0049

0.0066
0.0087
0.0113
0.0146
0.0188

0.0239
0.0301
0.0375
0.0465
0.0571

0.0694
0.0838
0.1003
0.1190
0.1401

0.1635
0.1894
0.2177
0.2483
0.2810

0.3156
0.3520
0.3897
0.4286
0.4681

0.0002
0.0003
0.0005
0.0007
0.0010

0.0014
0.0019
0.0026
0.0036
0.0048

0.0064
0.0084
0.0110
0.0143
0.0183

0.0233
0.0294
0.0367
0.0455
0.0559

0.0681
0.0823
0.0985
0.1170
0.1379

0.1611
0.1867
0.2148
0.2451
0.2776

0.3121
0.3483
0.3859
0.4217
0.4641
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Table A: continued

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 | 0.5000| 0.5010| 0.5080| 0.5120| 0.5160| 0.5199| 0.5219| 0.5279| 0.5319| 0.5359
0.1 | 0.5398| 0.5438| 0.5478| 0.5517| 0.5557| 0.5596| 0.5636| 0.5675| 0.5714| 0.5753
0.2 | 0.5793| 0.5832| 0.5871| 0.5910| 0.5948| 0.5987| 0.6026| 0.6064| 0.6103| 0.6141
0.3 | 0.6179| 0.6217| 0.6255| 0.6293| 0.6331| 0.6368| 0.6406| 0.6443| 0.6180| 0.6517
0.4 | 0.6554| 0.6591| 0.6628| 0.6664| 0.6700| 0.6736| 0.6772| 0.6808| 0.6844| 0.6879
0.5 | 0.6915| 0.6950| 0.6985| 0.7019| 0.7054| 0.7088| 0.7123| 0.7157| 0.7190| 0.7224
0.6 | 0.7257| 0.7291| 0.7324| 0.7357| 0.7389| 0.7422| 0.7454| 0.7486| 0.7517| 0.7549
0.7 | 0.7580| 0.7611| 0.7642| 0.7673| 0.7704| 0.7734| 0.7764| 0.7794| 0.7823| 0.7852
0.8 | 0.7881| 0.7910| 0.7939| 0.7967| 0.7995| 0.8023| 0.8051| 0.8078| 0.8106| 0.8133
0.9 | 0.8159| 0.8186| 0.8212| 0.8238| 0.8264| 0.8289| 0.8315| 0.8340| 0.8365| 0.8389
1.0 | 0.8413| 0.8438| 0.8461| 0.8485| 0.8508| 0.8531| 0.8554| 0.8577| 0.8599| 0.8621
1.1 | 0.8643| 0.8665| 0.8686| 0.8708| 0.8729| 0.8749| 0.8770| 0.8790| 0.8810| 0.8830
1.2 | 0.8849| 0.8869| 0.8888| 0.8907| 0.8925| 0.8944| 0.8962| 0.8980| 0.8997| 0.9015
1.3 | 0.9032| 0.9049| 0.9066| 0.9082| 0.9099| 0.9115| 0.9131| 0.9147| 0.9162| 0.9177
1.4 |0.9192| 0.9207| 0.9222| 0.9236| 0.9251| 0.9265| 0.9278| 0.9292| 0.9306| 0.9319
1.5 | 0.9332| 0.9345| 0.9357| 0.9370| 0.9382| 0.9394| 0.9406| 0.9418| 0.9429| 0.9441
1.6 |0.9452| 0.9463| 0.9474| 0.9484| 0.9495| 0.9505| 0.9515| 0.9525| 0.9535| 0.9545
1.7 | 0.9554| 0.9564| 0.9573| 0.9582| 0.9591| 0.9599| 0.9608| 0.9616| 0.9625| 0.9633
1.8 |0.9641| 0.9649| 0.9656| 0.9664| 0.9671| 0.9678| 0.9686| 0.9693| 0.9699| 0.9706
1.9 |0.9713| 0.9719| 0.9726| 0.9732| 0.9738| 0.9744| 0.9750| 0.9756| 0.9761| 0.9767
2.0 |0.9772| 0.9778| 0.9783| 0.9788| 0.9793| 0.9798| 0.9803| 0.9808| 0.9812| 0.9817
2.1 |0.9821| 0.9826| 0.9830| 0.9834| 0.9839| 0.9842| 0.9846| 0.9850| 0.9854| 0.9857
2.2 |0.9861| 0.9864| 0.9868| 0.9871| 0.9875| 0.9878| 0.9881| 0.9884| 0.9887| 0.9890
2.3 | 0.9893| 0.9896| 0.9898| 0.9901| 0.9904| 0.9906| 0.9909| 0.9911| 0.9913| 0.9916
2.4 |0.9918| 0.9920| 0.9922| 0.9925| 0.9927| 0.9929| 0.9931| 0.9932| 0.9934| 0.9936
2.5 |0.9938| 0.9940| 0.9941| 0.9943| 0.9945| 0.9946| 0.9948| 0.9949| 0.9951| 0.9952
2.6 | 0.9953| 0.9955| 0.9956| 0.9957| 0.9959| 0.9960| 0.9961| 0.9962| 0.9963| 0.9964
2.7 |0.9965| 0.9966| 0.9967| 0.9968| 0.9969| 0.9970| 0.9971| 0.9972| 0.9973| 0.9974
2.8 |0.9974| 0.9975| 0.9976| 0.9977| 0.9977| 0.9978| 0.9979| 0.9979| 0.9980| 0.9981
2.9 |0.9981| 0.9982| 0.9982| 0.9981| 0.9984| 0.9984| 0.9985| 0.9985| 0.9986| 0.9986
3.0 | 0.9987| 0.9987| 0.9987| 0.9988| 0.9988| 0.9989| 0.9989| 0.9989| 0.9990| 0.9990
3.1 | 0.9990| 0.9991| 0.9991| 0.9991| 0.9992| 0.9992| 0.9992| 0.9992| 0.9993| 0.9993
3.2 | 0.9993| 0.9993| 0.9994| 0.9994| 0.9994| 0.9994| 0.9994| 0.9994| 0.9995| 0.9995
3.3 | 0.9995| 0.9995| 0.9995| 0.9996| 0.9996| 0.9996| 0.9996| 0.9996| 0.9996| 0.9997
3.4 [0.9997| 0.9997| 0.9997| 0.9997| 0.9997| 0.9997| 0.9997| 0.9997| 0.9997| 0.9998
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TABLE B

t-DISTRIBUTION
Critical Values of the t Distribution «

a
v 0.10 0.05 0.025 0.01 0.005
1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032
6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169
11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2977
15 1.341 1.753 2131 2.602 2.947
16 1.337 1.746 2.120 2.583 2921
17 1.333 1.740 2.110 2.567 2.898
18 1.330 1.734 2.101 2.552 2.878
19 1.328 1.729 2.093 2.539 2.861
20 1.325 1.725 2.086 2.528 2.845
21 1.323 1721 2.080 2.518 2.831
22 1.321 1.717 2.074 2.508 2.819
23 1.319 1.714 2.069 2.500 2.807
24 1.318 1711 2.064 2.492 2.797
25 1.316 1.708 2.060 2.485 2.787
26 1.315 1.706 2.056 2.479 2.779
27 1.314 1.703 2.052 2473 2771
28 1.313 1.701 2.048 2.467 2.763
29 1311 1.699 2.045 2.462 2.756
inf. 1.282 1.645 1.960 2.326 2.576
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Table C : Percentage Points of theFdistribution(FO5V Vv.)
. V11 V2

Vi\ Degrees of freedom for the numeratog, (v

Va |1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 OO

1 161.4199.5 215.7 224.6 230.2 234.0 2363B.2 240.5 241.9 243.9 245.9 248.0 249.125%1.1 252.2 253.3 254.3
2 18.51 19.0 19.16 19.25 19.30 19.33 19.35371 19.38 19.40 19.41 19.43 19.45 19.45161929.47 19.48 19.49 19.5Q
3 10.13 955 9.28 9.12 9.01 8.94 8.8885 8.81 879 874 8.70 8.68.64 862 859 857 855 8.53
4 771 6.94 659 6.39 6.26 6.16 6.08.04 6.00 596 591 586 5.88.77 575 572 569 566 5.63
5 6.61 579 541 519 5.05 495 48882 477 474 468 462 45853 450 4.46 4.43 440 4.36
6 599 514 476 453 439 428 42415 410 4.06 4.00 394 3.83.84 3.81 3.77 3.74 3.70 3.67
7 559 474 435 412 397 3.87 3.79.73 368 364 357 351 34841 338 3.34 3.30 3.27 3.23
8 532 4.46 407 3.84 3.69 358 35844 339 335 3.28 322 3.18.12 3.08 3.04 3.01 2.97 2.93
9 5.12 426 386 3.63 3.48 3.37 3.2923 318 3.14 3.07 3.01 29290 286 2.83 2.79 2.75 2.71
10 | 496 4.10 3.71 3.48 3.33 3.22 3.1307 3.02 298 291 285 27274 270 2.66 2.62 258 2.54
11 | 484 398 359 3.36 3.20 3.09 3.0295 290 285 279 272 26861 257 253 249 245 2.40
12 | 475 3.89 349 326 3.11 3.00 29285 280 275 2.69 262 25251 247 243 238 234 2.30
13 |4.67 3.81 341 3.18 3.03 292 28377 271 267 260 253 24842 238 234 230 225 221
14 | 460 374 334 3.11 296 2.8 27870 265 260 253 246 23935 231 227 222 218 2.13
15 | 454 368 329 3.06 290 2.79 27264 259 254 248 240 23329 225 220 216 211 2.07
16 |4.49 363 324 3.01 285 274 26B59 254 249 242 235 22824 219 215 211 2.06 2.01
17 |4.45 359 320 296 2.81 270 26255 249 245 238 231 22319 215 210 2.06 2.01 1.96
18 |4.41 355 3.16 293 2.77 266 25851 246 241 234 227 21915 211 2.06 2.02 1.97 1.92
19 | 438 352 313 290 274 263 25248 242 238 231 233 21811 2.07 2.03 1.98 1.93 1.88
20 [ 435 349 310 287 271 260 25245 239 235 228 220 212.08 2.04 199 195 190 1.84
21 | 432 347 3.07 284 268 257 24942 237 232 225 218 2.10.05 2.01 196 192 187 181
22 |430 344 305 282 266 255 24840 234 230 223 215 2.@03 198 194 189 184 1.78
23 | 428 342 3.03 280 264 253 24237 232 227 220 213 201 196 191 186 181 1.76
24 1426 340 3.01 278 262 251 24236 230 225 218 211 2038 194 189 184 179 1.73
25 [ 424 339 299 276 260 249 24R34 228 224 216 2.09 206 192 1.87 1.82 1.77 1.71
26 | 423 337 298 274 259 247 23232 227 222 215 207 19095 190 1.85 1.80 1.75 1.69
27 | 421 335 296 273 257 246 23231 225 220 213 206 19v93 1.88 1.84 1.79 1.73 1.67
28 | 420 334 295 271 256 245 23829 2.24 219 212 204 1991 1.87 1.82 1.77 171 1.65
29 | 418 333 293 270 255 243 23328 222 218 210 2.03 149 185 1.81 1.75 1.70 1.64
30 [4.17 332 292 269 253 242 23327 221 216 2.09 201 19389 1.84 179 174 1.68 1.62
40 | 4.08 323 284 261 245 234 22818 212 208 200 192 18479 174 169 164 158 151
60 |4.00 3.15 276 253 237 22572210 204 199 192 184 1.7570 1.65 159 153 1.47 1.39
120 | 3.92 3.07 2.68 245 229 217 92.2.02 196 191 183 1.75 16661 155 155 143 135 1.2%
00 | 3.84 3.00 260 237 221 210 12094 188 183 1.75 167 15752 146 139 132 1.22

1.0T
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Table D : Percentage of Pointsof the F Distribution (F

A0,vq,Vy )

ViV,

coooxlcnmboamr—\‘

N NN NDNRNRNNERERRERRPEPRPR P P P
N o 00N W NP O O ® N O 00 M WDN R O

28

1 2 3 4 5 7 8 9 10 12 15 20 24 30 460 120 ©O

39.86 49.50 53.59 55.83 57.24 58.20 58.9¥46%9.86 60.19 60.71 61.22 61.74 62.0@®2%H2.53 62.79 63.06 63.33
853 9.00 9.16 9.24 929 9.33 59.3.37 9.38 9.39 9.41 942 9845 946 947 947 948 9.49
554 546 539 534 531 528 75.5.25 524 523 522 520 5mM18 517 516 515 514 513
454 432 419 411 405 4.01 83.8.95 394 392 390 387 3.8183 3.82 380 3.79 378 3.76
406 3.78 362 352 345 3.40 73.3.34 332 330 327 324 3419 317 316 314 312 3.10
3.78 346 329 3.18 311 3.05 13298 296 294 290 287 2.8482 280 278 276 274 272
359 326 3.07 296 288 28382275 272 270 267 263 25958 256 254 251 249 247
346 3.11 292 281 273 2.67 22859 256 254 250 246 24240 238 236 234 232 229
336 3.01 281 269 261 255 12247 244 242 238 234 23028 225 223 221 218 2.16
329 292 273 261 252 24641.238 235 232 228 224 22018 216 213 211 208 2.06
323 286 266 254 245 239 42230 227 225 221 217 2.®210 208 205 203 200 1.97
318 281 2.61 248 239 23382224 221 219 215 210 2p®4 201 199 196 193 1.90
314 276 256 243 235 228 32220 216 214 210 205 20188 196 193 190 1.88 1.85
310 273 252 239 231 12492215 212 210 205 201 1.9®4 191 189 186 1.83 1.80
3.07 270 249 236 227 221 62R.12 209 206 202 197 1980 187 185 182 1.79 1.76
3.67 267 246 233 224 218 32.2.09 206 203 199 194 1887 184 181 178 175 1.72
3.03 264 244 231 222 21502206 203 200 196 191 1884 181 178 175 172 1.69
3.01 262 242 229 220 213 82.2.04 200 198 193 189 1881 178 175 172 169 1.66
299 261 240 227 218 211 62.@.02 198 196 191 186 189 176 173 170 1.67 1.63
297 259 238 225 216 209 42.2.00 1.96 194 189 184 1197 174 171 168 164 1.61
296 257 236 223 214 208 22a.98 195 192 187 183 17875 172 169 166 1.62 1.59
295 256 235 222 213 206 12a.97 193 190 186 181 1.7673 170 167 164 1.60 1.57
294 255 234 221 211 205 19995 192 189 184 180 1.7M72 169 166 162 159 1.55
293 254 233 219 210 20481994 191 188 183 178 1TI30 167 164 161 157 1.53
292 253 232 218 209 202 71993 189 187 182 177 1IH89 166 163 159 156 1.52
291 252 231 217 208 20161992 1838 186 181 176 1TIHB8 165 161 158 154 1.50
290 251 230 217 207 20051991 187 185 180 1.75 1IG7 164 160 157 153 1.49
289 250 229 216 206 20041990 187 184 179 174 16%6 163 159 156 152 1.48
289 250 228 215 206 199 319489 186 183 178 173 16865 162 158 155 151 147
288 249 228 214 203 19831988 185 182 177 172 7.664 161 157 154 150 1.46
284 244 223 209 200 19371883 179 176 171 166 16157 154 151 147 142 1.38
279 239 218 204 195 187 218.77 174 171 166 160 13451 1.48 144 140 1.35 1.29
275 235 213 199 190 182 717.72 168 165 160 155 14845 141 137 132 126 1.19
271 230 208 194 185 177217167 163 160 155 149 14238 1.34 130 124 1.17 1.00
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TableE : Statistical Constantsfor X and R Control Charts

n A, D; D4 d2

2 1.880 0 3.268 1.128
3 1.023 0 2574 1.693
4 0.729 0 2.282 2.059
) 0.577 0 2.114 2.326
6 0.483 0 2.004 2.534
I 0.419 0.076 1.924 2.704
8 0.373 0.136 1.864 2.847
9 0.337 0.184 1.816 2.970
10 0.308 0.223 1777 3.078
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